Cover Image

A Review of Antimicrobial Therapy for Infectious Uveitis of the Posterior Segment

Ahmed B Sallam, Kyle A. Kirkland, Richard Barry, Mohamed Kamel Soliman, Tayyeba K Ali, Sue Lightman

Abstract


Treatment of infectious posterior uveitis represents a therapeutic challenge for ophthalmologists. The eye is a privileged site, maintained by blood ocular barriers, which limits penetration of systemic antimicrobials into the posterior segment. In addition, topical and subconjunctival therapies are incapable of producing sufficient drug concentrations, intraocularly. Posterior infectious uveitis can be caused by bacteria, virus, fungi, or protozoa. Mode of treatment varies greatly based on the infectious etiology. Certain drugs have advantages over others in the treatment of infectious uveitis. Topical and systemic therapies are often employed in the treatment of ocular infection, yet the route of treatment can have limitations based on penetration, concentration, and duration. The introduction of intravitreal antimicrobial therapy has advanced the management of intraocular infections. Being able to bypass blood-ocular barriers allows high drug concentrations to be delivered directly to the posterior segment with minimal systemic absorption. However, because the difference between the therapeutic and the toxic doses of some antimicrobial drugs falls within a narrow concentration range, intravitreal therapy could be associated with ocular toxicity risks.  In many cases of infectious uveitis, combination of intravitreal and systemic therapies are necessary. In this comprehensive review, the authors aimed at reviewing clinically relevant data regarding intraocular and systemic antimicrobial therapy for posterior segment infectious uveitis. The review also discussed the evolving trends in intraocular treatment, and elaborated on antibiotic pharmacokinetics and pharmacodynamics, efficacy, and adverse effects.


References


Mandelcorn ED. Infectious causes of posterior uveitis. Can J Ophthalmol. 2013;48(1):31-9. doi: 10.1016/j.jcjo.2012.11.013 pmid: 23419296

Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am. 2009;23(4):791-815, vii. doi: 10.1016/j.idc.2009.06.008 pmid: 19909885

Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced drug delivery reviews. 2006;58(11):1131-5.

Lightman SL, Palestine AG, Rapoport SI, Rechthand E. Quantitative assessment of the permeability of the rat blood-retinal barrier to small water-soluble non-electrolytes. The Journal of physiology. 1987;389:483-90.

Tonjum AM, Pedersen OO. The permeability of the human ciliary and iridial epithelium to horseradish peroxidase. An in vitro study. Acta ophthalmologica. 1977;55(5):781-8.

Delamere NA. Ciliary Body and Ciliary Epithelium. Advances in organ biology. 2005;10:127-48. doi: 10.1016/S1569-2590(05)10005-6 pmid: PMC3018825

Raviola G. Blood-aqueous barrier can be circumvented by lowering intraocular pressure. Proceedings of the National Academy of Sciences of the United States of America. 1976;73(2):638-42.

Cunha-Vaz JG. The blood-ocular barriers. Investigative ophthalmology & visual science. 1978;17(11):1037-9.

Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78(3):715-21. doi: 10.1016/s0014-4835(03)00213-6 pmid: 15106951

Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144-68. doi: 10.1016/j.preteyeres.2009.12.002 pmid: 20044062

Holland GN, Buhles WC, Jr., Mastre B, Kaplan HJ. A controlled retrospective study of ganciclovir treatment for cytomegalovirus retinopathy. Use of a standardized system for the assessment of disease outcome. UCLA CMV Retinopathy. Study Group. Arch Ophthalmol. 1989;107(12):1759-66. pmid: 2556989

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711-45. doi: 10.1146/annurev.mi.49.100195.003431 pmid: 8561477

Callegan MC, Gilmore MS, Gregory M, Ramadan RT, Wiskur BJ, Moyer AL, et al. Bacterial endophthalmitis: therapeutic challenges and host-pathogen interactions. Progress in retinal and eye research. 2007;26(2):189-203.

Ohtori A, Tojo K. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biological & pharmaceutical bulletin. 1994;17(2):283-90.

Maurice DM, Mishima S. Pharmacology of the eye. Sears ML, editor. Berlin: Springer; 1984. 19-116 p.

Tojo K, Isowaki A. Pharmacokinetic model for in vivo/in vitro correlation of intravitreal drug delivery. Advanced drug delivery reviews. 2001;52(1):17-24.

Radhika M, Mithal K, Bawdekar A, Dave V, Jindal A, Relhan N, et al. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J Ophthalmic Inflamm Infect. 2014;4:22. doi: 10.1186/s12348-014-0022-z pmid: 25667683

Coco RM, Lopez MI, Pastor JC, Nozal MJ. Pharmacokinetics of intravitreal vancomycin in normal and infected rabbit eyes. J Ocul Pharmacol Ther. 1998;14(6):555-63. doi: 10.1089/jop.1998.14.555 pmid: 9867338

Doft BH, Weiskopf J, Nilsson-Ehle I, Wingard LB, Jr. Amphotericin clearance in vitrectomized versus nonvitrectomized eyes. Ophthalmology. 1985;92(11):1601-5. pmid: 3878487

Mandell BA, Meredith TA, Aguilar E, el-Massry A, Sawant A, Gardner S. Effects of inflammation and surgery on amikacin levels in the vitreous cavity. Am J Ophthalmol. 1993;115(6):770-4. pmid: 8506912

Hegazy HM, Kivilcim M, Peyman GA, Unal MH, Liang C, Molinari LC, et al. Evaluation of toxicity of intravitreal ceftazidime, vancomycin, and ganciclovir in a silicone oil-filled eye. Retina. 1999;19(6):553-7. pmid: 10606458

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48 Suppl 1:5-16. pmid: 11420333

Wispelwey B. Clinical implications of pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Infect Dis. 2005;41 Suppl 2:S127-35. doi: 10.1086/428053 pmid: 15942879

Su CY, Lin CP, Wang HZ, Su MY, Tsai RK, Wu KY, et al. Intraocular use of fluconazole in the management of ocular fungal infection. Kaohsiung J Med Sci. 1999;15(4):218-25. pmid: 10330801

Chen M, Li X, Liu J, Han Y, Cheng L. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release. 2015;203:109-17. doi: 10.1016/j.jconrel.2015.02.021 pmid: 25700623

Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433-41. doi: 10.1167/iovs.12-9872 pmid: 22669719

Jackson TL, Eykyn SJ, Graham EM, Stanford MR. Endogenous bacterial endophthalmitis: a 17-year prospective series and review of 267 reported cases. Surv Ophthalmol. 2003;48(4):403-23. pmid: 12850229

Ng JQ, Morlet N, Pearman JW, Constable IJ, McAllister IL, Kennedy CJ, et al. Management and outcomes of postoperative endophthalmitis since the endophthalmitis vitrectomy study: the Endophthalmitis Population Study of Western Australia (EPSWA)'s fifth report. Ophthalmology. 2005;112(7):1199-206. doi: 10.1016/j.ophtha.2005.01.050 pmid: 15921759

Hooper CY, Lightman SL, Pacheco P, Tam PM, Khan A, Taylor SR. Adjunctive antibiotics in the treatment of acute bacterial endophthalmitis following cataract surgery. Acta Ophthalmol. 2012;90(7):e572-3. doi: 10.1111/j.1755-3768.2011.02365.x pmid: 22429465

Yoon YH, Lee SU, Sohn JH, Lee SE. Result of early vitrectomy for endogenous Klebsiella pneumoniae endophthalmitis. Retina. 2003;23(3):366-70. pmid: 12824838

Do T, Hon DN, Aung T, Hien ND, Cowan CL, Jr. Bacterial endogenous endophthalmitis in Vietnam: a randomized controlled trial comparing vitrectomy with silicone oil versus vitrectomy alone. Clin Ophthalmol. 2014;8:1633-40. doi: 10.2147/OPTH.S67589 pmid: 25210432

Ferencz JR, Assia EI, Diamantstein L, Rubinstein E. Vancomycin concentration in the vitreous after intravenous and intravitreal administration for postoperative endophthalmitis. Archives of ophthalmology. 1999;117(8):1023-7.

Results of the Endophthalmitis Vitrectomy Study. A randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Endophthalmitis Vitrectomy Study Group. Arch Ophthalmol. 1995;113(12):1479-96. s7487614

Aguilar HE, Meredith TA, el-Massry A, Shaarawy A, Kincaid M, Dick J, et al. Vancomycin levels after intravitreal injection. Effects of inflammation and surgery. Retina. 1995;15(5):428-32. pmid: 8594637

Park SS, Vallar RV, Hong CH, von Gunten S, Ruoff K, D'Amico DJ. Intravitreal dexamethasone effect on intravitreal vancomycin elimination in endophthalmitis. Arch Ophthalmol. 1999;117(8):1058-62. pmid: 10448749

Gan IM, van Dissel JT, Beekhuis WH, Swart W, van Meurs JC. Intravitreal vancomycin and gentamicin concentrations in patients with postoperative endophthalmitis. Br J Ophthalmol. 2001;85(11):1289-93. pmid: 11673290

Benz MS, Scott IU, Flynn HW, Unonius N, Miller D. Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases. American journal of ophthalmology. 2004;137(1):38-42.

Khera M, Pathengay A, Jindal A, Jalali S, Mathai A, Pappuru RR, et al. Vancomycin-resistant Gram-positive bacterial endophthalmitis: epidemiology, treatment options, and outcomes. J Ophthalmic Inflamm Infect. 2013;3(1):46. doi: 10.1186/1869-5760-3-46 pmid: 23607574

Pflugfelder SC, Hernández E, Fliesler SJ, Alvarez J, Pflugfelder ME, Forster RK. Intravitreal vancomycin. Retinal toxicity, clearance, and interaction with gentamicin. Archives of ophthalmology. 1987;105(6):831-7.

Mochizuki K, Torisaki M, Wakabayashi K. Effects of vancomycin and ofloxacin on rabbit ERG in vivo. Jpn J Ophthalmol. 1991;35(4):435-45. pmid: 1821433

Perez-Canales JL, Perez-Santonja JJ, Campos-Mollo E. Evaluation of macular thickness changes after intracameral vancomycin in cataract surgery. Int Ophthalmol. 2015;35(1):49-57. doi: 10.1007/s10792-014-0017-7 pmid: 25387843

Witkin AJ, Chang DF, Jumper JM, Charles S, Eliott D, Hoffman RS, et al. Vancomycin-Associated Hemorrhagic Occlusive Retinal Vasculitis: Clinical Characteristics of 36 Eyes. Ophthalmology. 2017;124(5):583-95. doi: 10.1016/j.ophtha.2016.11.042 pmid: 28110950

Witkin AJ, Shah AR, Engstrom RE, Kron-Gray MM, Baumal CR, Johnson MW, et al. Postoperative Hemorrhagic Occlusive Retinal Vasculitis: Expanding the Clinical Spectrum and Possible Association with Vancomycin. Ophthalmology. 2015;122(7):1438-51. doi: 10.1016/j.ophtha.2015.03.016 pmid: 25886796

Todorich B, Faia LJ, Thanos A, Amin M, Folberg R, Wolfe JD, et al. Vancomycin-Associated Hemorrhagic Occlusive Retinal Vasculitis: A Clinical-Pathophysiological Analysis. Am J Ophthalmol. 2018;188:131-40. doi: 10.1016/j.ajo.2018.01.030 pmid: 29425799

Shaarawy A, Meredith TA, Kincaid M, Dick J, Aguilar E, Ritchie DJ, et al. Intraocular injection of ceftazidime. Effects of inflammation and surgery. Retina. 1995;15(5):433-8. pmid: 8594638

Mochizuki K, Yamashita Y, Torisaki M, Komatsu M, Tanahashi T, Kawasaki K. Intraocular kinetics of ceftazidime (Modacin). Ophthalmic research. 1992;24(3):150-4.

Roth DB, Flynn HW. Antibiotic selection in the treatment of endophthalmitis: the significance of drug combinations and synergy. Survey of ophthalmology. 1997;41(5):395-401.

Irvine WD, Flynn HW, Miller D, Pflugfelder SC. Endophthalmitis caused by gram-negative organisms. Archives of ophthalmology. 1992;110(10):1450-4.

Chamberland S, L'Ecuyer J, Lessard C, Bernier M, Provencher P, Bergeron MG. Antibiotic susceptibility profiles of 941 gram-negative bacteria isolated from septicemic patients throughout Canada. The Canadian Study Group. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 1992;15(4):615-28.

Jindal A, Pathengay A, Khera M, Jalali S, Mathai A, Pappuru RR, et al. Combined ceftazidime and amikacin resistance among Gram-negative isolates in acute-onset postoperative endophthalmitis: prevalence, antimicrobial susceptibilities, and visual acuity outcome. J Ophthalmic Inflamm Infect. 2013;3(1):62. doi: 10.1186/1869-5760-3-62 pmid: 24161048

Reddy AK, Reddy RR, Paruvelli MR, Ambatipudi S, Rani A, Lodhi SA, et al. Susceptibility of bacterial isolates to vancomycin and ceftazidime from patients with endophthalmitis: Is there a need to change the empirical therapy in suspected bacterial endophthalmitis? Int Ophthalmol. 2014. doi: 10.1007/s10792-014-0015-9 pmid: 25384628

Campochiaro PA, Green WR. Toxicity of intravitreous ceftazidime in primate retina. Archives of ophthalmology. 1992;110(11):1625-9.

Doft BH, Barza M. Ceftazidime or amikacin: choice of intravitreal antimicrobials in the treatment of postoperative endophthalmitis. Arch Ophthalmol. 1994;112(1):17-8. pmid: 8285881

Jackson J, Chen C, Buising K. Aminoglycosides: how should we use them in the 21st century? Curr Opin Infect Dis. 2013;26(6):516-25. doi: 10.1097/QCO.0000000000000012 pmid: 24141453

Conway BP, Campochiaro PA. Macular infarction after endophthalmitis treated with vitrectomy and intravitreal gentamicin. Archives of ophthalmology. 1986;104(3):367-71.

D'Amico DJ, Caspers-Velu L, Libert J, Shanks E, Schrooyen M, Hanninen LA, et al. Comparative toxicity of intravitreal aminoglycoside antibiotics. Am J Ophthalmol. 1985;100(2):264-75. pmid: 4025468

Zachary IG, Forster RK. Experimental intravitreal gentamicin. Am J Ophthalmol. 1976;82(4):604-11. pmid: 970424

Hooper DC. Mode of action of fluoroquinolones. Drugs. 1999;58 Suppl 2:6-10. pmid: 10553698

Smith A, Pennefather PM, Kaye SB, Hart CA. Fluoroquinolones: place in ocular therapy. Drugs. 2001;61(6):747-61. pmid: 11398907

Mather R, Karenchak LM, Romanowski EG, Kowalski RP. Fourth generation fluoroquinolones: new weapons in the arsenal of ophthalmic antibiotics. Am J Ophthalmol. 2002;133(4):463-6. pmid: 11931779

Balfour JA, Wiseman LR. Moxifloxacin. Drugs. 1999;57(3):363-73; discussion 74. pmid: 10193688

Ermis SS, Cetinkaya Z, Kiyici H, Inan UU, Ozturk F. Effects of intravitreal moxifloxacin and dexamethasone in experimental Staphylococcus aureus endophthalmitis. Curr Eye Res. 2007;32(4):337-44. doi: 10.1080/02713680701215595 pmid: 17453955

Bispo PJ, Alfonso EC, Flynn HW, Miller D. Emerging 8-methoxyfluoroquinolone resistance among methicillin-susceptible Staphylococcus epidermidis isolates recovered from patients with endophthalmitis. J Clin Microbiol. 2013;51(9):2959-63. doi: 10.1128/JCM.00846-13 pmid: 23824766

Schimel AM, Miller D, Flynn HW, Jr. Endophthalmitis isolates and antibiotic susceptibilities: a 10-year review of culture-proven cases. Am J Ophthalmol. 2013;156(1):50-2 e1. doi: 10.1016/j.ajo.2013.01.027 pmid: 23540710

Jacobs DJ, Grube TJ, Flynn HW, Jr., Greven CM, Pathengay A, Miller D, et al. Intravitreal moxifloxacin in the management of Ochrobactrum intermedium endophthalmitis due to metallic intraocular foreign body. Clin Ophthalmol. 2013;7:1727-30. doi: 10.2147/OPTH.S44212 pmid: 24039392

Iyer MN, He F, Wensel TG, Mieler WF, Benz MS, Holz ER. Intravitreal clearance of moxifloxacin. Trans Am Ophthalmol Soc. 2005;103:76-81; discussion -3. pmid: 17057790

Thompson AM. Ocular toxicity of fluoroquinolones. Clin Experiment Ophthalmol. 2007;35(6):566-77. doi: 10.1111/j.1442-9071.2007.01552.x pmid: 17760640

Gao H, Pennesi ME, Qiao X, Iyer MN, Wu SM, Holz ER, et al. Intravitreal moxifloxacin: retinal safety study with electroretinography and histopathology in animal models. Invest Ophthalmol Vis Sci. 2006;47(4):1606-11. doi: 10.1167/iovs.05-0702 pmid: 16565399

Kernt M, Neubauer As Fau - Ulbig MW, Ulbig Mw Fau - Kampik A, Kampik A Fau - Welge-Lussen U, Welge-Lussen U, Gao H, et al. In vitro safety of intravitreal moxifloxacin for endophthalmitis treatment Intravitreal moxifloxacin: retinal safety study with lectroretinography and histopathology in animal models. J Catar Refract Surg. 2008;34(3):480-8.

Bowen RC, Zhou AX, Bondalapati S, Lawyer TW, Snow KB, Evans PR, et al. Comparative analysis of the safety and efficacy of intracameral cefuroxime, moxifloxacin and vancomycin at the end of cataract surgery: a meta-analysis. Br J Ophthalmol. 2018. doi: 10.1136/bjophthalmol-2017-311051 pmid: 29326317

Shivaramaiah HS, Relhan N, Pathengay A, Mohan N, Flynn HW, Jr. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: Clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am J Ophthalmol Case Rep. 2018;10:211-4. doi: 10.1016/j.ajoc.2018.02.030 pmid: 29552670

Todokoro D, Mochizuki K, Nishida T, Eguchi H, Miyamoto T, Hattori T, et al. Isolates and antibiotic susceptibilities of endogenous bacterial endophthalmitis: A retrospective multicenter study in Japan. J Infect Chemother. 2018;24(6):458-62. doi: 10.1016/j.jiac.2018.01.019 pmid: 29487034

Flisiak R, Halota W, Tomasiewicz K, Kostrzewska K, Razavi HA, Gower EE. Forecasting the disease burden of chronic hepatitis C virus in Poland. Eur J Gastroenterol Hepatol. 2015;27(1):70-6. doi: 10.1097/MEG.0000000000000237 pmid: 25426979

Sallam A, Taylor SR, Khan A, McCluskey P, Lynn WA, Manku K, et al. Factors determining visual outcome in endogenous Candida endophthalmitis. Retina. 2012;32(6):1129-34. doi: 10.1097/IAE.0b013e31822d3a34 pmid: 22298012

Silva RA, Sridhar J, Miller D, Wykoff CC, Flynn HW, Jr. Exogenous fungal endophthalmitis: an analysis of isolates and susceptibilities to antifungal agents over a 20-year period (1990-2010). Am J Ophthalmol. 2015;159(2):257-64 e1. doi: 10.1016/j.ajo.2014.10.027 pmid: 25449001

Lingappan A, Wykoff CC, Albini TA, Miller D, Pathengay A, Davis JL, et al. Endogenous fungal endophthalmitis: causative organisms, management strategies, and visual acuity outcomes. Am J Ophthalmol. 2012;153(1):162-6 e1. doi: 10.1016/j.ajo.2011.06.020 pmid: 21917234

Behera UC, Budhwani M, Das T, Basu S, Padhi TR, Barik MR, et al. Role of Early Vitrectomy in the Treatment of Fungal Endophthalmitis. Retina. 2018;38(7):1385-92. doi: 10.1097/IAE.0000000000001727 pmid: 28541964

Wingard LB, Jr., Zuravleff JJ, Doft BH, Berk L, Rinkoff J. Intraocular distribution of intravitreally administered amphotericin B in normal and vitrectomized eyes. Invest Ophthalmol Vis Sci. 1989;30(10):2184-9. pmid: 2793359

Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A. Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother. 2004;48(7):2477-82. doi: 10.1128/AAC.48.7.2477-2482.2004 pmid: 15215097

Baldinger J, Doft BH, Burns SA, Johnson B. Retinal toxicity of amphotericin B in vitrectomised versus non-vitrectomised eyes. Br J Ophthalmol. 1986;70(9):657-61. pmid: 3756121

Payne JF, Keenum DG, Sternberg P, Jr., Thliveris A, Kala A, Olsen TW. Concentrated intravitreal amphotericin B in fungal endophthalmitis. Arch Ophthalmol. 2010;128(12):1546-50. doi: 10.1001/archophthalmol.2010.305 pmid: 21149777

Hariprasad SM, Mieler WF, Holz ER, Gao H, Kim JE, Chi J, et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch Ophthalmol. 2004;122(1):42-7. doi: 10.1001/archopht.122.1.42 pmid: 14718293

Shen YC, Wang MY, Wang CY, Tsai TC, Tsai HY, Lee YF, et al. Clearance of intravitreal voriconazole. Invest Ophthalmol Vis Sci. 2007;48(5):2238-41. doi: 10.1167/iovs.06-1362 pmid: 17460285

Espinel-Ingroff A, Boyle K, Sheehan DJ. In vitro antifungal activities of voriconazole and reference agents as determined by NCCLS methods: review of the literature. Mycopathologia. 2001;150(3):101-15. pmid: 11469757

Gao H, Pennesi ME, Shah K, Qiao X, Hariprasad SM, Mieler WF, et al. Intravitreal voriconazole: an electroretinographic and histopathologic study. Arch Ophthalmol. 2004;122(11):1687-92. doi: 10.1001/archopht.122.11.1687 pmid: 15534131

Mithal K, Pathengay A, Bawdekar A, Jindal A, Vira D, Relhan N, et al. Filamentous fungal endophthalmitis: results of combination therapy with intravitreal amphotericin B and voriconazole. Clin Ophthalmol. 2015;9:649-55. doi: 10.2147/OPTH.S80387 pmid: 25926714

Shen YC, Liang CY, Wang CY, Lin KH, Hsu MY, Yuen HL, et al. Pharmacokinetics and safety of intravitreal caspofungin. Antimicrob Agents Chemother. 2014;58(12):7234-9. doi: 10.1128/AAC.03324-14 pmid: 25246398

Danielescu C, Cantemir A, Chiselita D. Successful treatment of fungal endophthalmitis using intravitreal caspofungin. Arq Bras Oftalmol. 2017;80(3):196-8. doi: 10.5935/0004-2749.20170048 pmid: 28832730

Moloney TP, Park J. Microbiological isolates and antibiotic sensitivities in culture-proven endophthalmitis: a 15-year review. Br J Ophthalmol. 2014;98(11):1492-7. doi: 10.1136/bjophthalmol-2014-305030 pmid: 24939423

Jabs DA, Ahuja A, Van Natta M, Lyon A, Srivastava S, Gangaputra S, et al. Course of cytomegalovirus retinitis in the era of highly active antiretroviral therapy: five-year outcomes. Ophthalmology. 2010;117(11):2152-61 e1-2. doi: 10.1016/j.ophtha.2010.03.031 pmid: 20673591

Jeon S, Lee WK. Cytomegalovirus Retinitis in a Human Immunodeficiency Virus-negative Cohort: Long-term Management and Complications. Ocul Immunol Inflamm. 2015;23(5):392-9. doi: 10.3109/09273948.2014.985385 pmid: 25760914

Vertes D, Snyers B, De Potter P. Cytomegalovirus retinitis after low-dose intravitreous triamcinolone acetonide in an immunocompetent patient: a warning for the widespread use of intravitreous corticosteroids. Int Ophthalmol. 2010;30(5):595-7. doi: 10.1007/s10792-010-9404-x pmid: 20931263

Musch DC, Martin DF, Gordon JF, Davis MD, Kuppermann BD. Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. The Ganciclovir Implant Study Group. N Engl J Med. 1997;337(2):83-90. doi: 10.1056/NEJM199707103370203 pmid: 9211677

Agarwal A, Kumari N, Trehan A, Khadwal A, Dogra MR, Gupta V, et al. Outcome of cytomegalovirus retinitis in immunocompromised patients without Human Immunodeficiency Virus treated with intravitreal ganciclovir injection. Graefes Arch Clin Exp Ophthalmol. 2014;252(9):1393-401. doi: 10.1007/s00417-014-2587-5 pmid: 24557658

Wong R, Pavesio CE, Laidlaw DA, Williamson TH, Graham EM, Stanford MR. Acute retinal necrosis: the effects of intravitreal foscarnet and virus type on outcome. Ophthalmology. 2010;117(3):556-60. doi: 10.1016/j.ophtha.2009.08.003 pmid: 20031221

Gore DM, Gore SK, Visser L. Progressive outer retinal necrosis: outcomes in the intravitreal era. Arch Ophthalmol. 2012;130(6):700-6. doi: 10.1001/archophthalmol.2011.2622 pmid: 22801826

Morlet N, Young S, Naidoo D, Graham G, Coroneo MT. High dose intravitreal ganciclovir injection provides a prolonged therapeutic intraocular concentration. Br J Ophthalmol. 1996;80(3):214-6. pmid: 8703858

Velez G, Roy CE, Whitcup SM, Chan CC, Robinson MR. High-dose intravitreal ganciclovir and foscarnet for cytomegalovirus retinitis. Am J Ophthalmol. 2001;131(3):396-7. pmid: 11239885

Berthe P, Baudouin C, Garraffo R, Hofmann P, Taburet AM, Lapalus P. Toxicologic and pharmacokinetic analysis of intravitreal injections of foscarnet, either alone or in combination with ganciclovir. Invest Ophthalmol Vis Sci. 1994;35(3):1038-45. pmid: 8125715

Dunn JP, Van Natta M, Foster G, Kuppermann BD, Martin DF, Zong A, et al. Complications of ganciclovir implant surgery in patients with cytomegalovirus retinitis: the Ganciclovir Cidofovir Cytomegalovirus Retinitis Trial. Retina. 2004;24(1):41-50. pmid: 15076943

Shane TS, Martin DF, Endopthalmitis-Gancioclovir Implant Study G. Endophthalmitis after ganciclovir implant in patients with AIDS and cytomegalovirus retinitis. Am J Ophthalmol. 2003;136(4):649-54. pmid: 14516804

Lopez-Cortes LF, Pastor-Ramos MT, Ruiz-Valderas R, Cordero E, Uceda-Montanes A, Claro-Cala CM, et al. Intravitreal pharmacokinetics and retinal concentrations of ganciclovir and foscarnet after intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2001;42(5):1024-8. pmid: 11274081

Tognon MS, Turrini B, Masiero G, Scaggiante R, Cadrobbi P, Baldanti F, et al. Intravitreal and systemic foscarnet in the treatment of AIDS-related CMV retinitis. Eur J Ophthalmol. 1996;6(2):179-82. pmid: 8823593

Flores-Aguilar M, Huang JS, Wiley CA, De Clercq E, Vuong C, Bergeron-Lynn G, et al. Long-acting therapy of viral retinitis with (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine. J Infect Dis. 1994;169(3):642-7. pmid: 8158041

Davis JL, Taskintuna I, Freeman WR, Weinberg DV, Feuer WJ, Leonard RE. Iritis and hypotony after treatment with intravenous cidofovir for cytomegalovirus retinitis. Arch Ophthalmol. 1997;115(6):733-7. pmid: 9194724

Jones JL, Dargelas V, Roberts J, Press C, Remington JS, Montoya JG. Risk factors for Toxoplasma gondii infection in the United States. Clin Infect Dis. 2009;49(6):878-84. doi: 10.1086/605433 pmid: 19663709

Holland GN, Lewis KG. An update on current practices in the management of ocular toxoplasmosis. Am J Ophthalmol. 2002;134(1):102-14. pmid: 12095816

Soheilian M, Ramezani A, Azimzadeh A, Sadoughi MM, Dehghan MH, Shahghadami R, et al. Randomized trial of intravitreal clindamycin and dexamethasone versus pyrimethamine, sulfadiazine, and prednisolone in treatment of ocular toxoplasmosis. Ophthalmology. 2011;118(1):134-41. doi: 10.1016/j.ophtha.2010.04.020 pmid: 20708269

Lasave AF, Diaz-Llopis M, Muccioli C, Belfort R, Jr., Arevalo JF. Intravitreal clindamycin and dexamethasone for zone 1 toxoplasmic retinochoroiditis at twenty-four months. Ophthalmology. 2010;117(9):1831-8. doi: 10.1016/j.ophtha.2010.01.028 pmid: 20471684

Kishore K, Conway MD, Peyman GA. Intravitreal clindamycin and dexamethasone for toxoplasmic retinochoroiditis. Ophthalmic Surg Lasers. 2001;32(3):183-92. pmid: 11371084

Baharivand N, Mahdavifard A, Fouladi RF. Intravitreal clindamycin plus dexamethasone versus classic oral therapy in toxoplasmic retinochoroiditis: a prospective randomized clinical trial. Int Ophthalmol. 2013;33(1):39-46. doi: 10.1007/s10792-012-9634-1 pmid: 23053769

Soto J. Clindamycin and pseudomembranous colitis. Lancet. 1995;346(8969):249. pmid: 7616819

Choudhury H, Jindal A, Pathengay A, Bawdekar A, Albini T, Flynn HW, Jr. The role of intravitreal trimethoprim/sulfamethoxazole in the treatment of toxoplasma retinochoroiditis. Ophthalmic Surg Lasers Imaging Retina. 2015;46(1):137-40. doi: 10.3928/23258160-20150101-27 pmid: 25559528

Souza CE, Nascimento H, Lima A, Muccioli C, Belfort R, Jr. Intravitreal Injection of Sulfamethoxazole and Trimethoprim Associated with Dexamethasone as an Alternative Therapy for Ocular Toxoplasmosis. Ocul Immunol Inflamm. 2017:1-4. doi: 10.1080/09273948.2017.1307420 pmid: 28448726

Fiscella R, Peyman GA, Kimura A, Small G. Intravitreal toxicity of cotrimoxazole. Ophthalmic Surg. 1988;19(1):44-6. pmid: 3257556

Pearce W, Hsu J, Yeh S. Advances in drug delivery to the posterior segment. Curr Opin Ophthalmol. 2015;26(3):233-9. doi: 10.1097/ICU.0000000000000143 pmid: 25759965

Eljarrat-Binstock E, Domb AJ, Orucov F, Frucht-Pery J, Pe'er J. Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr Eye Res. 2007;32(7-8):639-46. doi: 10.1080/02713680701528674 pmid: 17852187

Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, Gottfredsdottir MS, Hardarson SH, Johannesson G, et al. gamma-Cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther. 2014;30(1):35-41. doi: 10.1089/jop.2013.0060 pmid: 24205991

Goldstein DA, Do D, Noronha G, Kissner JM, Srivastava SK, Nguyen QD. Suprachoroidal Corticosteroid Administration: A Novel Route for Local Treatment of Noninfectious Uveitis. Transl Vis Sci Technol. 2016;5(6):14. doi: 10.1167/tvst.5.6.14 pmid: 27980877

Willoughby AS, Vuong VS, Cunefare D, Farsiu S, Noronha G, Danis RP, et al. Choroidal Changes After Suprachoroidal Injection of Triamcinolone Acetonide in Eyes With Macular Edema Secondary to Retinal Vein Occlusion. Am J Ophthalmol. 2018;186:144-51. doi: 10.1016/j.ajo.2017.11.020 pmid: 29199012


Full Text: Full Text PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.