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ABSTRACT
Background: Novel ocular imaging modalities have greatly impacted the diagnosis and management of 
different types of ocular neoplasia. In this narrative review, we summarize the practical features of popular 
and novel imaging modalities for ocular tumors.
Methods: Four databases, including PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, 
were searched from January 1, 2000 to August 31, 2022. Articles reporting different imaging modalities for 
diagnosing or monitoring treatment responses of ocular tumors were extracted using various combinations 
of the following keywords: ocular neoplasia, positron emission tomography or PET, single-photon emission 
computed tomography or SPECT, optical coherence tomography or OCT, OCT angiography or OCTA, 
computed tomography or CT, ultrasonography or US, ultrasound biomicroscopy or UBM, and magnetic 
resonance imaging or MRI. 
Results: Various ocular imaging modalities had different accuracies as adjunctive tools for detecting or 
managing ocular tumors. Anterior ultra-high-resolution optical coherence tomography (OCT) could be used 
to evaluate images with < 5-µm resolution. OCT angiography provided deeper insight into retinal vascular 
changes associated with the malignant transformation of choroidal melanoma. OCT in children altered the 
diagnosis of suspicious retinoblastoma in 3% of the cases and treatment plan in 11% of the cases. While 
positron-emission tomography (PET)/computed tomography (CT) allowed the detection of metastatic 
lesions of choroidal melanoma by full-body scanning, single-photon emission CT was more sensitive 
compared to PET in detecting choroidal melanoma. Ultrasound biomicroscopy, with an accuracy exceeding 
92.5%, could detect retinal calcification in lesions measuring 2 – 3 mm. Magnetic resonance imaging (MRI) 
had better contrast compared to ultrasound biomicroscopy and higher sensitivity compared to CT in 
detecting post-laminar optic nerve invasion. However, MRI had a lower spatial resolution compared to OCT. 
Further development of imaging modalities and their application in drug development would improve the 
treatment of ocular tumors. 
Conclusions: Although diagnosing ocular tumors depend on clinical characteristics, innovations in ocular 
imaging have enabled early diagnosis and timely, appropriate management of ocular neoplasia, which are 
conducive to favorable visual outcomes and increased life expectancy. Further systematic reviews and meta-
analyses of primary studies focusing on a specific imaging modality in ocular neoplasia could precisely 
determine the diagnostic accuracy of each imaging modality to better guide eye practitioners with efficient 
diagnostic or therapeutic approaches for these sight- or life-threatening entities. Imaging modalities may play 
a major role in drug development in the future.
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INTRODUCTION
Ocular tumors can be melanocytic, lymphoid, leukemic, fibrotic, epithelial, and lipomatous [1-5]. Recently, 
3540 new cases and 350 deaths from ocular and orbital cancers have been reported in the United States [6]. 

Age differences exist across the types and risk factors for ocular neoplasia. Children are predisposed to 
retinoblastoma (RB) and rhabdomyosarcoma, while adults can develop uveal melanoma (UM) and ocular 
lymphoma [7, 8]. Risk factors associated with RB include genetic or individual predispositions [7, 9]. Risk 
factors associated with UM include congenital eye melanocytosis, light eye color, white ethnicity, and exposure 
to ultraviolet rays [10-12]. 

Understanding intraocular tumors and their ocular complications are factors determining their response to 
treatment and practical management [13-15]. Appropriate diagnostic tools are essential for the early detection 
and management of ocular cancer. Although biopsy with histological examination is the gold standard for 
confirming a tumor, advanced noninvasive imaging techniques have equal reliability in diagnosing ocular tumors 
[7, 8].

Recent advances in ocular imaging have greatly influenced the diagnosis and treatment of both anterior and 
posterior segment eye diseases [16, 17]. In addition to pre-treatment diagnosis [18], imaging modalities are vital 
for post-treatment monitoring of ocular tumors and evaluation of response to chemotherapy management [19, 
20]. Moreover, novel ocular imaging approaches may help the development of appropriate treatment modalities 
for intraocular tumors [21].

In this narrative review, we summarize novel imaging modalities commonly used for diagnosing or managing 
ocular tumors (Figure 1), including choroidal melanoma, RB, and anterior and posterior segment tumors, or 
for drug development, based on the literature published since 2000. We summarize the clinical presentation of 
the most common ocular tumors diagnosed using different imaging modalities and discuss the advantages and 
disadvantages of each modality. In addition, we briefly explain various pharmacokinetic studies on eye tissues 
using imaging modalities to elucidate its potential use in drug development.

METHODS
The literature was searched from the official home pages of PubMed/MEDLINE, Web of Science, Scopus, and 
Google Scholar from January 1, 2000 to August 31, 2022 using various combinations of the following keywords: 
ocular neoplasia, positron emission tomography or PET, single-photon emission computed tomography or 
SPECT, optical coherence tomography or OCT, optical coherence tomography angiography or OCTA, computed 
tomography or CT, ultrasonography or US, ultrasound biomicroscopy or UBM, and magnetic resonance imaging 
or MRI. The eligibility criterion was detection or management of ocular tumors using the imaging modality 
with high accuracy. After reviewing the title, abstract, and full text, articles that met the eligibility criteria were 
evaluated by two independent reviewers (A.A. and Z.H.), and disagreements were resolved in consultation with 
a third reviewer (R.J.). Studies on nontumoral eye lesions were excluded. Finally, relevant articles on imaging 
modalities for detecting or managing ocular neoplasia were selected, and their full text was reviewed.

A B
Figure 1. (A) Color fundus photograph (Topcon TRC50LX, Topcon, Tokyo, Japan) showing left eye optic disc melanocytoma as 
a highly pigmented black-brownish lesion involving most of the optic disc and adjacent retina. (B) The fundus autofluorescence 
(Heidelberg Engineering, Heidelberg, Germany) shows hypofluorescence of the lesion corresponding to the pigmented mass and 
adjacent retina.
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RESULTS
The initial search yielded 136 articles, of which relevant articles were selected, and their practical points were 
summarized. RB in children and UM in adults were the most common intraocular malignant tumors [22-24]. 
On histological assessment, RB had calcification in over 95% of cases [22], and ocular calcification in children 
younger than 3 years indicated RB. Approximately 5% of all melanomas in adults were UMs, and 5% of UMs 
were located in the iris [23, 24]. 

Another common adult tumor was ocular lymphoma, often associated with non-Hodgkin’s lymphoma. It 
was found inside the eye, orbit, and adnexa. Orbital lymphoma was the most common orbital cancer in adults, 
and 5% of the patients with lymphoma were at risk for secondary orbital lymphoma [25]. 

Table 1 summarizes the available imaging modalities as adjunctive tools for the assessment of ocular tumors 
along with their advantages and disadvantages. The imaging modalities are discussed in detail below.

DISCUSSION
Positron emission tomography (PET)
PET uses the high glucose uptake in tumor cells to retrieve information about the location, size, and shape of the 
tumor and thereby distinguish between cancerous and normal structures. A radioactive form of glucose, such as 
fluoro-2-deoxyglucose18 (FDG), is injected intravenously and accumulates in the tumoral tissue [26, 27]. PET 
is then performed to obtain detailed information about tumor cells [26]. PET alone is sensitive for the detection 
of metastatic lesions in orbital squamous cell carcinoma [26]. 

However, the sensitivity of PET is inferior to that of magnetic resonance imaging (MRI) in detecting 
metastatic liver lesions in newly diagnosed UM [36]. FDG-based glucose metabolism is not sensitive for the 
diagnosis of choroidal melanoma or liver metastases from UM [26, 37, 38]. FDG absorption with false-positive 
results for nonmalignant cell detection has been reported. Inflammatory, infectious, or traumatic processes can 
cause false-positive results [39]. However, the importance of PET/computed tomography (CT) in staging 
pediatric cancers, such as rhabdomyosarcoma, has been reported [40]. PET can be used for staging choroidal 
melanoma based on the glucose uptake. CT can reduce the false-positive rate [41], and combined CT and PET 
improves the diagnostic accuracy [40, 41]. 

Table 1. Advantages and disadvantages of various imaging modalities used for ocular tumors

Imaging Modality Advantage Disadvantage

PET-CT Scan It offers the possibility of scanning the whole 
body to diagnose metastatic lesions and 
diagnosis of medium to large UMs [26].

The amount of glucose uptake is unknown for tumors, and 
tumors with a low metabolic rate cannot be diagnosed. 
Radiopharmaceuticals are used, thereby increasing the risk of 
secondary cancer [27].

SPECT It is more sensitive compared to PET in 
diagnosing UMs [28].

Its diagnostic accuracy depends on timely imaging, and it is 
recommended to be performed after 48 h of an intravenous 
123I-IMP injection. In addition, radiopharmaceuticals are used, 
thereby increasing the risk of secondary cancer [29].

AS-OCT It is suitable to diagnose tumors of 
the anterior segment of the eye and 
is a safe diagnostic tool without using 
radiopharmaceuticals [30].

It is unsuitable for pigmented tumors because of a less 
penetrating power and for tumors of the posterior segment 
of the eye. It fails to detect metastatic lesions, unlike PET or 
SPECT [31].

UBM It has a superior ability for penetration 
compared to AS-OCT in diagnosing anterior 
segment tumors, and diagnosing RB in the 
fetus is affordable, efficient, and available 
[32].

It cannot provide epithelial detail as seen on UHR-OCT or 
confocal microscopy [33].

MRI It is a radiation-free imaging modality and 
promising in diagnosing fetal RB. It is better 
for soft tissue imaging compared to CT 
and ultrasound. It has a wide application in 
the diagnosis of RB and UM, particularly 
metastatic ones [34]. 

The image of calcified tissue is poor compared to CT. Motion 
artifact affects image resolution. It is expensive and difficult to 
access [35].

Abbreviation: PET-CT Scan, positron emission tomography-computed tomography; UM, uveal melanoma; SPECT, single photon 
emission computed tomography; 123I-IMP, N-isopropyl-p-[123I]iodoamphetamine; AS-OCT, anterior segment optical coherence 
tomography; UBM, ultrasound biomicroscopy; RB, retinoblastoma; UHR-OCT, ultrahigh-resolution OCT; MRI, magnetic 
resonance imaging.



Imaging techniques for ocular neoplasia

Med Hypothesis Discov Innov Optom. 2022; 3(3) 89

Reddy et al. [42] showed that both PET/CT scanners could detect medium and large tumors. Finger et al. 
[43] proposed PET/CT as a noninvasive marker for metastatic choroidal melanoma. Calcagni et al. [44] showed 
that differences in glucose metabolism could be used to distinguish between different types of low- and high-risk 
UM cancer cells. In a study by McConnell et al. [45], PET/CT showed 100% sensitivity for the diagnosis of 
choroidal melanoma with loss of chromosome number 3. This is a useful screening tool with low false-positive 
results to detect liver metastasis in patients with UM [41].

In addition, radiopharmaceuticals used in PET induce a risk of radiation-induced tumors. Huang et al. [27] 
reported that the risk of cancer development after PET/CT decreased as the age at exposure increased. Children 
with RB gene mutations are susceptible to secondary neoplasia due to exposure to ionizing radiation; therefore, 
PET/CT is not recommended in children [46].

Single-photon emission CT (SPECT)
SPECT is the three-dimensional (3D) counterpart of planar radioisotope imaging that uses radionuclides 
and records the emission of gamma rays from different angles with a nuclear camera [28, 29]. Goto et al. [28] 
described the use of N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) for diagnosing UM with atypical clinical 
manifestations. The basic principle of this technique is the positive correlation between the accumulation of 
123I-IMP and the amount of melanin [28]. 

In a comparative study of PET and SPECT for diagnosing malignant UM, Abe et al. [29] found that SPECT 
was more sensitive 24 h after intravenous 123I-IMP administration and that imaging after the intravenous 123I-IMP 
injection was effective for differentiating malignant melanoma from non-malignant nevus only 48 h after the 
injection. Yamazaki et al. [47] showed that SPECT images integrated with CT images, which is a standardized 
uptake value method evaluated at a 6-h time point, can predict 123I-IMP uptake at a 24-h time point and is more 
predictive for detecting choroidal melanoma compared to the conventional count-based uptake index method 
[47]. 

In a meta-analysis, Liu et al. [48] compared 18F-fluoride PET/CT and technetium-99-methylene 
diphosphonate bone scan (BS) in detecting bone metastases and found that the sensitivity was higher when the 
results were equivocally positive for BS (sensitivity, 96%; specificity, 93%), but the specificity was higher when 
equivocal results were reported as negative for BS (specificity, 95%; sensitivity, 93%) [48].

Optical coherence tomography (OCT)
OCT was developed based on optical coherence interference to measure the frequency of the returning beams 
from the eye and compare it with the reference light. The time and spectral domains are two types of OCT 
with high resolutions [30, 49]. Ultra-high-resolution (UHR) OCT is an advanced OCT technique that reveals 
abnormal features of ocular neoplasia [30, 50, 51]. High-resolution enhanced-depth OCT is a promising 
modality for the precise measurement of posteriorly located choroidal nevi [52].

Ocular neoplasia, such as surface squamous, conjunctival lesions (pigmented and non-pigmented), choroidal 
nevi, epithelioma, melanocytoma (Figure 1), and other forms of ocular neoplasia, can be diagnosed using OCT 
[30, 50-52]. Pavlin et al. [32] reported that OCT could help evaluate anterior segment tumors, particularly 
small hypopigmented iris tumors, with large infiltrating iris hypopigmented tumors not being imaged as well 
as small ones. A retrospective study by Bianciotto et al. [50] reported that OCT is only suitable for treating 
hypopigmented tumors. OCT can detect 18-µm lesions of high quality [50]. 

Nanji et al. [31] reported 71 patients with ocular surface squamous neoplasia (OSSN), lymphoma, and 
pigmented conjunctival lesions diagnosed using UHR-OCT with high accuracy. In addition, UHR-OCT is a 
useful method for differentiating thick tumoral lesions and squamous hyperactivity of the ocular surface from 
other ocular surface lesions, such as keratoconjunctivitis, pterygium, and Salzmann’s nodular degeneration [53-
55]. Intraoperative UHR-OCT aids in better visualization of tumor margins and guides surgical approaches for 
these lesions [56]. 

Lozanco Garcia et al. [57] reported that UHR-OCT has a 100% sensitivity and specificity for diagnosing 
OSSN from pterygium, with a cutoff point of 141 μm for epithelial thickness. Subclinical disease detected on 
UHR-OCT in patients with a definite clinical resolution of OSSN can help clinicians prevent disease progression 
or recurrence [58].  Hyperreflective bands in subepithelial lesions on UHR-OCT are related to paracellular 
infiltration based on histopathology and confirmed as conjunctival lymphoma [59]. The ability of UHR-OCT to 
image conjunctival lymphoma lesions can be restricted by the substantial thickness of the lesion, leading to lower 
structural details in deeper subepithelial tissues [60].

Recently, OCT angiography (OCTA) has revealed distinctive vascular patterns in OSSN lesions. The density 
of blood vessels in the body of OSSN tumors is higher than that in the underlying conjunctiva and subepithelial 
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tissue [61]. In a study by Brouwer et al. [62], anterior-segment OCTA showed tortuous vascular patterns in 
conjunctival melanoma differing from the vascular patterns seen in primary acquired melanosis (PAM) of the 
conjunctiva and normal conjunctiva; conjunctival nevi also have internal cystic structures relative to PAM lesions 
and conjunctival melanoma [62]. 

OCTA is used to profile the vasculature of the retina or optic disc [61], and its measurements can be helpful 
for the early detection of radiation retinopathy or optic neuropathy after brachytherapy in the eyes with UM 
through quantitative biomarkers [63]. OCTA can measure ischemia-related retinal quantitative capillary changes 
related to the visual acuity and radiation dose, and the development of radiation-induced retinal toxicity related 
to radiation may be predicted with this approach in the future [63, 64].

Ultrasound biomicroscopy (UBM)
Ultrasound waves with different frequencies were used in UBM. A major limitation of UBM is the use of the 
liquid immersion technique, which may not be possible in all patients [16]. Ultrasound waves are superior to 
light waves and enable better visualization of ocular tumors with a transition through large and highly pigmented 
tumors [34]. It is a useful modality to detect ocular tumors and their locations [32] and calcification with an 
accuracy exceeding 92.5% [65]. 

Ultrasonography (US) can be used for screening and predicting RB in fetus and for amniocentesis [66, 67]. 
In one study, US was used at 33 weeks of pregnancy to detect RB in the macular region of one eye [68].  It is 
easier and more cost-effective for diagnosing fetal RB compared to MRI [32] (Table 1). In addition, invasive 
tumors present as blunting of the anterior chamber, invasive tissue in the anterior chamber angle, ciliary body, 
or thickness of uvea on UBM 50 MHz [69, 70]. Meel et al. [33] found that latent intraocular invasion of OSSN 
could be diagnosed with UBM in patients with risk factors, such as nodular or ulcerative tumor morphology, 
tumor thickness of > 5 mm in height, or history of immunosuppressant use or surgical intervention [33, 69]. 

UBM is necessary for non-specific clinical manifestations of UM [71]. UM is a neoplasm that develops from 
the choroidal melanocytes, ciliary body, and iris in 90%, 7%, and 3% of the cases, respectively [72]. Molecular 
abnormalities and mutations have been identified in UM [73]. A choroidal nevus can progress to melanoma with 
age, which is a major problem in Europe and the United States because of population aging [74]. 

Magnetic Resonance Imaging (MRI)
Radiation-free MRI uses powerful static magnets for imaging. Various components of MRI have made it the 
surrogate gold-standard modality to evaluate the orbit and brain in RB after the gold-standard modality 
histopathology [75]. Studies have identified different aspects of RB and UM diagnoses using MRI. Schueler 
et al. [76] showed the use of high-resolution MRI for RB with hyperintense and hypointense signals in T1- 
and T2-weighted images relative to the vitreous, respectively; however, they had limited value in visualizing the 
prelaminar and postlaminar optic nerves. MRI has a weak ability to detect calcification caused by RB compared 
to CT; calcium appears hypointense on MRI [76]. 

Lemke et al. [77] showed a sensitivity of 91.7% and specificity of 88.9% for detecting a specific amount of 
intraocular calcification with MRI. However, small motion artifacts may impair the quality of the MRI image; 
even advanced MRI technology, such as UHR trans-3D turbo spin echo T2-weighted MRI, is prone to motion 
artifacts despite noise removal [78]. Therefore, various strategies have been developed to overcome the effects of 
eye movement on MRI [79, 80].

Bilateral posterior pole lesions can be identified at 35 weeks of pregnancy with MRI image resolution without 
affecting fetal movement [81]. The contrast resolution of MRI is better than that of UBM, and MRI has a higher 
sensitivity than CT for detecting post-laminar invasion in the optic nerve of eyes with RB [82]. MRI shows a 
sensitivity of 95% in the diagnosis of post-laminar invasion [82]. 

MRI enables the diagnosis of UM and can help with treatment planning using proton radiation. Daftari et 
al. [35] investigated the possible use of T2-weighted rapid rotation 3D MRI images in treatment planning for 
intraocular malignancy and found that MRI was excellent for demonstrating intraocular tumor volumes and 
provided additional information regarding the tumor shape. Direct MRI volumetric measurements showed a 
high degree of accuracy for tumor volume in patients with UM [35]. Optic nerve sheath meningioma (ONSM) 
is a rare, benign tumor of the optic nerve. MRI is preferred for diagnosing ONSM [83]. Despite the presence 
of pneumosinus dilatans, optic canal enlargement, and nerve sheath calcification of ONSM on CT, MRI is 
considered the gold-standard diagnostic modality [84]. 

Although MRI has a lower spatial resolution compared to OCT, it allows for simultaneous ocular and 
orbital imaging [85]. It is highly accurate in diagnosing metastatic liver lesions in the early detection of UM. 
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It helps formulate an appropriate treatment plan and provides information about the anatomical relationships 
of the tumor before brachytherapy, proton-beam therapy, and stereotactic radiotherapy [86]. With continuous 
advancements in MRI technology, radiofrequency coil design, and further optimization of MR sequences, MRI 
could become a superior imaging approach for diagnosing UM [87] or ocular tumors. 

Imaging technology in drug development
Ophthalmic CT or MRI with tumor volume measurements is an example of assessing the effectiveness of newly 
developed chemotherapeutic drugs used to treat ocular tumors [88, 89]. Similarly, imaging-based biomarkers 
can provide areas of greater immunization, safety, and molecular efficacy of medicine. Bergstrom et al. [88] 
proposed PET as a potential tool for determining the pharmacokinetics and release of new molecules during drug 
production. By using a radioactive ligand, changes in the receptor can be easily detected on PET to determine the 
pharmacokinetics of the new drug [89]. FDG-PET is used to monitor FDG uptake before and after bevacizumab 
treatment of rectal tumors [90]. 

Conventional pharmacokinetic techniques for analyzing the ocular distribution of drugs are invasive and rely 
on animal models. Human studies are generally performed concurrently with ocular surgery, such as vitrectomy 
[91], which can be alternatives to overcome these shortcomings. Successfully using micro-dialysis in determining 
the intratumoral pharmacokinetics of chemotherapy drugs, such as carboplatin and 5-fluorouracil, in RB has 
been reported [92]. Fernandez-Ferreiro et al. [93] used a PET/CT scanner to determine the clearance of three 
radiopharmaceutical molecules in the vitreous. A recent study demonstrated the use of PET as a potential 
noninvasive tool for conducting pharmacokinetic studies on ophthalmic drugs. SPECT/CT has also been used 
as a noninvasive tool for monitoring ocular drug distribution [94].

In another study on the binding of melanin to labeled 123I-IMP, the distribution and elimination of this 
molecule in albino and pigmented rats were studied using SPECT/CT as a tool for non-invasive control of 
drug pharmacokinetics [95]. Dynamic contrast-enhanced MRI has been used to study the spatial and temporal 
distributions of drugs and the uniformity and permeability of the blood–retinal barrier [96-98]. Despite 
advantages of MRI in the development of ophthalmic drug delivery, it has limitations compared to conventional 
pharmacokinetics, including low sensitivity, selective monitoring using radiopharmaceutical contrast, different 
relaxation times of protons in tissues, such as vitreous or aqueous humor, and high cost [99]. Studies are required 
to confirm the efficacy of integrating different imaging modalities to understand the kinetics, dynamics, and 
development of ocular drugs for managing vision-threatening tumors.

In this narrative review, we outlined the trend in innovations in ocular imaging techniques over the past two 
decades that has enabled early diagnosis and timely management of ocular neoplasias to achieve favorable visual 
outcomes and increase life expectancy. However, this review is limited by the lack of a comprehensive literature 
search, and some influential articles might have been overlooked. In addition, we presented an overview of 
various ocular imaging modalities but failed to examine the detailed practical points or diagnostic accuracy of 
each modality. Further systematic reviews and meta-analyses of primary studies focusing on a specific imaging 
modality in ocular neoplasia could precisely determine the diagnostic accuracy of each imaging modality to better 
guide eye practitioners toward efficient diagnostic or therapeutic approaches in these sight or life-threatening 
entities. Finally, despite significant advances in imaging techniques, they are considered adjunctive tools for 
detecting or managing ocular tumors and cannot substitute thorough clinical examinations or careful regular 
follow-ups. For both anterior- and posterior-segment tumors, the importance of regular anterior-segment slit-
photo or fundus photography for monitoring and documenting baseline features and tumor progression cannot 
be overstated.

CONCLUSIONS
Various ocular tumors can be accurately detected using various imaging modalities. The advantages and 
disadvantages of imaging modalities should be considered based on the nature of the tumor. Although MRI 
is expensive, it is safe and has a wider scope for diagnosing various types of ocular tumors. OCT and US are 
superior to other techniques, particularly for diagnosing anterior-segment tumors. Despite caution regarding 
the radiation risk and higher cost associated with using PET/CT and SPECT, these are useful for whole-body 
scanning to detect metastatic lesions. In multipurpose diagnoses using different approaches, the advantages 
and disadvantages of each modality can be neutralized and show better diagnostic possibilities compared to a 
single imaging method. Imaging modalities may play a major role in drug development in the future. Further 
development of imaging modalities with higher resolution would solve the current challenges in ocular tumor 
detection, and their application in drug development would improve the treatment of ocular tumors. 
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