

Letter to the Editor

Treatment options for diabetic retinopathy in pregnancy

Mustafa Kayabasi 1, Omer Karti 2 and Ali Osman Saatci 2

- ¹ Department of Ophthalmology, Mus State Hospital, Mus, Turkey
- ² Department of Ophthalmology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey

KEYWORDS

gestational diabetes mellitus, diabetic retinopathies, hyperglycemias, blood flow, intravitreal injection, VEGFs, laser therapies

Dear Editor,

We read with great interest the recent review by Rashidian titled "Pregnancy and diabetic retinopathy" [1]. The article provides a comprehensive overview of the proposed pathophysiological mechanisms underlying the development and progression of diabetic retinopathy (DR) during pregnancy, while offering practical clinical care recommendations [1]. Given the rising prevalence of diabetes mellitus (DM) among women of reproductive age, this topic is highly relevant [2, 3]. We believe that some aspects of the treatment approach during pregnancy deserve further discussion and clarification based on the emerging clinical evidence.

Pregnancy is a risk factor for both the development and progression of DR [4]. Approximately 1 in 12 pregnant individuals with preexisting DM and no baseline retinopathy are expected to develop some form of DR during pregnancy. Moreover, patients with pre-existing retinopathy may experience disease worsening during this period. Notably, DR affects nearly 50% of pregnant women with type 1 DM and approximately one in seven women with type 2 DM [5]. This highlights the importance of understanding and optimizing DR management during pregnancy to preserve maternal vision and promote favorable fetal outcomes.

Preconception care is crucial in optimizing maternal health and reducing the risk of complications for both the mother and developing fetus. Ophthalmic examination before conception is strongly recommended in clinical guidelines to accurately assess DR severity [6]. If severe non-proliferative DR, proliferative DR, or diabetic macular edema (DME) is identified, laser photocoagulation is generally advised prior to pregnancy, in alignment with the standard recommendations for the general diabetic population. Women with proliferative DR in early pregnancy and treated with laser photocoagulation are more likely to experience disease progression than those diagnosed and treated prior to conception [7]. Current guidelines do not provide specific recommendations for the use of intravitreal injections to treat DME before pregnancy [8].

Laser photocoagulation (focal/grid or panretinal) is widely regarded as a safe and effective treatment for DR in pregnant women. It remains a key component of DR management during pregnancy. Rathinavelu et al. [9] recently reported successful laser photocoagulation of DR in pregnant women, without treatment-related complications [9]. Current guidelines acknowledge that panretinal photocoagulation may be needed earlier in pregnant patients—especially when DR advances to severe non-proliferative stages or worse—rather than delaying treatment in hopes of spontaneous regression, which could result in poorer outcomes [8, 9].

Correspondences: Ali Osman Saatci, Mustafa Kemal Sahil Bulvarı. No: 73 A Blok, Daire: 9, Narlidere, 35320, Izmir, Turkiye. Email: osman.saatci@gmail.com, ORCID iD: https://orcid.org/0000-0001-6848-7239.

How to cite this article: Kayabasi M, Karti O, Saatci AO. Treatment options for diabetic retinopathy in pregnancy. Med Hypothesis Discov Innov Optom. 2025 Summer; 6(2):83-85. DOI: https://doi.org/10.51329/mehdioptometry226

Received: 28 December 2024; Accepted: 20 June 2025

Copyright © Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.

DME is the most common cause of vision loss related to DR; however, few studies have specifically examined DME during pregnancy. The reported prevalence of pregnancy-related DME ranges from 8.9% to 12.5% [4]. Pregnant women with mild to moderate DME can be managed with close observation, focusing on achieving and maintaining optimal glycemic control [10]. Nonetheless, these patients require more intensive monitoring than the non-pregnant population because of the potential for rapid disease progression during pregnancy [8]. If macular edema does not improve after a period of observation, focal/grid laser photocoagulation is recommended as the first-line treatment during pregnancy [11]. Alternative laser treatments, such as subthreshold micropulse or Endpoint Management laser therapy, may also be considered in cases involving the fovea, in which conventional laser treatment could threaten central vision [12].

Intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF) agents is currently the most effective therapy for DME [13]. However, the use of anti-VEGF therapy during pregnancy is generally reserved for exceptional cases because of the limited long-term safety data, potential teratogenic effects, and classification of these agents as Category C drugs by the United States Food and Drug Administration [5]. Spontaneous abortion and preeclampsia have been reported following intravitreal bevacizumab injections [7]. If anti-VEGF treatment is deemed necessary—usually after other therapeutic options have proven ineffective or inappropriate—treatment delay is recommended until the later stages of pregnancy, particularly the third trimester. This approach aims to minimize fetal exposure during the critical periods of organogenesis and early development [8].

The successful use of intravitreal bevacizumab, ranibizumab, and aflibercept for various retinal disorders, including DR, in pregnant women has also been documented [9, 14]. The selection of an anti-VEGF agent during pregnancy is largely influenced by the systemic half-life of the drug. Among anti-VEGF agents, systemic exposure is reported to be highest with bevacizumab and lowest with ranibizumab [15]. Bevacizumab, aflibercept, and ranibizumab rapidly enter the systemic circulation; however, ranibizumab is cleared more quickly, whereas bevacizumab and aflibercept demonstrate prolonged systemic exposure. Furthermore, bevacizumab and aflibercept significantly suppress plasma VEGF levels for an extended period following intravitreal injection, raising concerns of prolonged systemic exposure [14]. In contrast, ranibizumab has limited systemic absorption and a shorter systemic half-life [16]. Moreover, the successful use of intravitreal ranibizumab during pregnancy—without maternal or fetal complications—has been documented, suggesting that it may be more suitable for pregnant women or those planning to conceive shortly after treatment [17].

Evidence on the use of intravitreal corticosteroid injections during pregnancy remains scarce, primarily because of the ethical challenges inherent in conducting large-scale clinical trials in pregnant populations [8]. Although systemic and topical corticosteroids have been associated with a range of fetal developmental abnormalities, the current data suggest that intravitreal administration leads to minimal systemic absorption, potentially reducing fetal exposure [18]. The successful use of intravitreal triamcinolone and dexamethasone for the treatment of DR during pregnancy has been documented in case reports and case series [7, 19]. Given the limited data on safety and efficacy, intravitreal corticosteroids during pregnancy should be selected on a case-by-case basis, ideally administered during the second or third trimester, and only after careful evaluation of the potential therapeutic benefits against known or theoretical risks [20]. A concise comparison of available treatments is provided in Table 1.

In conclusion, the management of DR during pregnancy requires a multidisciplinary, individualized approach that carefully balances the preservation of maternal retinal health and minimizing fetal risk. Laser photocoagulation remains the primary and safest treatment modality, whereas adjunctive intravitreal pharmacological therapies should be cautiously considered when clinically warranted. Larger prospective studies are crucial for optimizing treatment strategies and elucidating the safety profiles of intravitreal agents in this unique patient population.

Table 1. Treatment modalities [5, 7-11, 13, 18, 19] for diabetic retinopathy in pregnancy

<u> </u>			
Treatment Modality	Safety in pregnancy	Indications	Notes
Panretinal photocoagulation	Safe	PDR Severe NPDR	Standard of care
Focal / grid laser	Safe	Center-sparing DME	Preferred first-line for DME
Intravitreal anti-VEGFs	Limited data, use with	Center-involving DME	Prefer ranibizumab in the third
	caution	Resistant PDR	trimester
Intravitreal steroids	Limited data, use with caution	Refractory DME Contraindications to anti- VEGFs	Low systemic absorption
Observation	Safe for mild NPDR and DME	Early-stage disease	Requires close follow-up

Abbreviations: PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; DME, diabetic macular edema; VEGF, vascular endothelial growth factor.

ETHICAL DECLARATIONS

Ethical approval: Not required. Conflict of interests: None.

FUNDING

None.

ACKNOWLEDGMENTS

None.

REFERENCES

- Rashidian P. Pregnancy and diabetic retinopathy. Medical hypothesis, discovery & innovation in optometry. 2024 Apr 30;5(1):35-42. doi: 10.51329/mehdioptometry195.
- Widyaputri F, Rogers SL, Kandasamy R, Shub A, Symons RCA, Lim LL. Global Estimates of Diabetic Retinopathy Prevalence and Progression in Pregnant Women With Preexisting Diabetes: A Systematic Review and Meta-analysis. JAMA Ophthalmol. 2022 May 1;140(5):486-494. doi: 10.1001/jamaophthalmol.2022.0050. PMID: 35357410; PMCID: PMC8972153.
- Mallika P, Tan A, S A, T A, Alwi SS, Intan G. Diabetic retinopathy and the effect of pregnancy. Malays Fam Physician. 2010 Apr 30;5(1):2-5.
 PMID: 25606177; PMCID: PMC4170393.
- Huang J, Liang C, Huang J, Liu L. Update on diabetic retinopathy during pregnancy. Eur J Ophthalmol. 2024 Nov;34(6):1695-1706. doi: 10.1177/11206721241248868. Epub 2024 May 6. PMID: 38710196.
- Lee SC, Siebert E, Raja V, Mehrotra C, Richards J, Khan J, Graham DF. Determinants of progression of diabetic retinopathy in pregnancy. Diabetes Res Clin Pract. 2024 Aug;214:111784. doi: 10.1016/j.diabres.2024.111784. Epub 2024 Jul 14. PMID: 39004310.
- Widyaputri F, Lim LL. Diabetic retinopathy in pregnancy: A growing problem. Clin Exp Ophthalmol. 2023 Apr;51(3):192-194. doi: 10.1111/ceo.14222. PMID: 37062881.
- Chandrasekaran PR, Madanagopalan VG, Narayanan R. Diabetic retinopathy in pregnancy A review. Indian J Ophthalmol. 2021 Nov;69(11):3015-3025. doi: 10.4103/ijo.IJO_1377_21. PMID: 34708737; PMCID: PMC8725079.
- Rosu LM, Prodan-Bărbulescu C, Maghiari AL, Bernad ES, Bernad RL, Iacob R, Stoicescu ER, Borozan F, Ghenciu LA. Current Trends in Diagnosis and Treatment Approach of Diabetic Retinopathy during Pregnancy: A Narrative Review. Diagnostics (Basel). 2024 Feb 8;14(4):369. doi: 10.3390/diagnostics14040369. PMID: 38396408; PMCID: PMC10887682.
- Rathinavelu J, Sarvepalli SM, Bailey B, D'Alessio D, Hadziahmetovic M. The Impact of Pregnancy on Diabetic Retinopathy: A Single-Site Study of Clinical Risk Factors. Ophthalmic Res. 2023;66(1):1169-1180. doi: 10.1159/000533416. Epub 2023 Aug 11. PMID: 37573783; PMCID: PMC10614555.
- Pappot N, Do NC, Vestgaard M, Ásbjörnsdóttir B, Hajari JN, Lund-Andersen H, Holmager P, Damm P, Ringholm L, Mathiesen ER.
 Prevalence and severity of diabetic retinopathy in pregnant women with diabetes-time to individualize photo screening frequency. Diabet Med. 2022 Jul;39(7):e14819. doi: 10.1111/dme.14819. Epub 2022 Feb 28. PMID: 35188688; PMCID: PMC9303564.
- Dedania VS, Bakri SJ. Novel pharmacotherapies in diabetic retinopathy. Middle East Afr J Ophthalmol. 2015 Apr-Jun;22(2):164-73. doi: 10.4103/0974-9233.154389. PMID: 25949073; PMCID: PMC4411612.
- Nicolò M, Musetti D, Traverso CE. Yellow micropulse laser in diabetic macular edema: a short-term pilot study. Eur J Ophthalmol. 2014 Nov-Dec;24(6):885-9. doi: 10.5301/ejo.5000495. Epub 2014 Jun 2. PMID: 24905254.
- Diabetic Retinopathy Clinical Research Network; Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, Ferris FL 3rd, Friedman SM, Glassman AR, Miller KM, Scott IU, Stockdale CR, Sun JK. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010 Jun;117(6):1064-1077.e35. doi: 10.1016/j.ophtha.2010.02.031. Epub 2010 Apr 28. PMID: 20427088; PMCID: PMC2937272.
- Polizzi S, Mahajan VB. Intravitreal Anti-VEGF Injections in Pregnancy: Case Series and Review of Literature. J Ocul Pharmacol Ther. 2015 Dec;31(10):605-10. doi: 10.1089/jop.2015.0056. Epub 2015 Aug 24. PMID: 26302032; PMCID: PMC4677108.
- Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, Couvillion S, Nasir MA, Rabena MD, Maia M, Van Everen S, Le K, Hanley WD. SYSTEMIC PHARMACOKINETICS AND PHARMACODYNAMICS OF INTRAVITREAL AFLIBERCEPT, BEVACIZUMAB, AND RANIBIZUMAB. Retina. 2017 Oct;37(10):1847-1858. doi: 10.1097/IAE.0000000000001493. PMID: 28106709; PMCID: PMC5642319.
- Zehetner C, Kirchmair R, Huber S, Kralinger MT, Kieselbach GF. Plasma levels of vascular endothelial growth factor before and after intravitreal injection of bevacizumab, ranibizumab and pegaptanib in patients with age-related macular degeneration, and in patients with diabetic macular oedema. Br J Ophthalmol. 2013 Apr;97(4):454-9. doi: 10.1136/bjophthalmol-2012-302451. Epub 2013 Feb 5. PMID: 23385630.
- 17. Naderan M, Sabzevary M, Rezaii K, Banafshehafshan A, Hantoushzadeh S. Intravitreal anti-vascular endothelial growth factor medications during pregnancy: current perspective. Int Ophthalmol. 2021 Feb;41(2):743-751. doi: 10.1007/s10792-020-01610-2. Epub 2020 Oct 12. PMID: 33044671.
- 18. Chi CC, Wang SH, Kirtschig G, Wojnarowska F. Systematic review of the safety of topical corticosteroids in pregnancy. J Am Acad Dermatol. 2010 Apr;62(4):694-705. doi: 10.1016/j.jaad.2009.09.041. Epub 2010 Feb 1. PMID: 20117858.
- 19. Concillado M, Lund-Andersen H, Mathiesen ER, Larsen M. Dexamethasone Intravitreal Implant for Diabetic Macular Edema During Pregnancy. Am J Ophthalmol. 2016 May;165:7-15. doi: 10.1016/j.ajo.2016.02.004. Epub 2016 Feb 17. PMID: 26896557.
- Gomułka K, Ruta M. The Role of Inflammation and Therapeutic Concepts in Diabetic Retinopathy-A Short Review. Int J Mol Sci. 2023 Jan 5;24(2):1024. doi: 10.3390/ijms24021024. PMID: 36674535; PMCID: PMC9864095