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ABSTRACT 

Background: The chi-squared (χ²) test is a fundamental non-parametric statistical method. It is widely employed in clinical, 

epidemiological, and biomedical research, including ophthalmology and optometry. It is useful for testing hypotheses regarding the 

independence of categorical data or the goodness-of-fit of the observed data to the expected distributions within contingency tables. In 

this review, we present a thorough examination of the statistical principles and clinical relevance of the χ² test, focusing on its application 

in vision science and related research domains. 

Methods: We outline the conceptual framework and methodological steps for conducting the χ² test, emphasizing its two primary 

forms: the goodness-of-fit test and the test of independence. We discuss key assumptions, such as the independence of observations, 

use of frequency data, and minimum expected cell counts in detail. Moreover, we explain the process of calculating degrees of freedom 

(df) and interpreting results based on critical values from the χ² distribution. Additionally, appropriate measures of effect size, i.e., Phi 

(φ) for 2 × 2 tables and Cramer’s V for larger tables, for assessing association strength, are introduced. To contextualize its clinical 

relevance, we present four examples from ophthalmology. 

Results: In the first example, the association between vision impairment (VI) and sex was examined using a 2 × 6 contingency table. The 

χ² statistic was 4.37 with 5 df (P > 0.05), indicating no statistically significant association. Cramer’s V was 0.04, suggesting a very weak 

effect. The second example tested the association between age category and first-year persistence with antiglaucoma therapy. Here, χ² 

= 5.93 (df = 2, P > 0.05), also showing no significant association, Cramer’s V was weak (0.04). In the third example, a 2 × 2 table was used 

to analyze the association between sex and the type of anti-vascular endothelial growth factor injection (aflibercept or ranibizumab) 

used. This yielded a χ² = 0.214 (df = 1, P > 0.05) and φ = 0.05, again indicating no statistically significant association and a weak effect. In 

a goodness-of-fit test assessing the pattern of contact lens usage, the χ² exceeded the critical threshold, indicating a significant deviation 

between the observed and expected frequencies, leading to rejection of the null hypothesis. 

Conclusions: The χ² test is a robust tool for analyzing categorical data, enabling clinicians and researchers to identify potential 

relationships between variables. However, its reliability depends on its proper application, including verification of assumptions and 

appropriate interpretation of effect sizes, along with consideration of statistical significance. In clinical disciplines, such as 

ophthalmology or optometry, understanding and utilizing the χ² test enhances research rigor and the validity of research findings, 

facilitating better-informed decisions in patient care and in program development. 
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INTRODUCTION 

The chi-square (χ²) test is a widely used, non-parametric statistical method (or distribution-free statistic) for analyzing categorical 

data [1]. It is primarily employed in two contexts: to evaluate the goodness-of-fit between observed and theoretical (expected) 

distributions and to test for independence between two categorical variables in a contingency table [2–5]. 

Categorical data are a fundamental data type encountered in experimental and clinical sciences. These data represent the 

counts of observations that are classified into qualitative categories and are often arranged in contingency tables to facilitate 

analysis. Such tables are conventionally structured as r × c matrices, where r denotes the number of rows and c represents the 

number of columns [6, 7], corresponding to the levels of the variables under study. In particular, the Pearson χ² test remains the 

cornerstone method for testing associations within such tables [8, 9], and its test statistic corresponds to the score for evaluating 

independence in r × c contingency tables [8, 9]. 

Originally introduced by Karl Pearson in 1900 to assess the goodness-of-fit of observed frequency distributions, the χ² test 

was subsequently extended, in 1904, for assessing the independence of categorical variables arranged in contingency tables [4]. 

Since then, the χ² family of tests has become integral to hypothesis testing in biomedical, psychological, and social sciences [4, 

10]. Among the strengths of this test are its simplicity and broad applicability, but its validity rests on the assumption of 

sufficiently large sample sizes [1, 11]. 

In this review, we aim to provide a comprehensive overview of the statistical foundations and practical applications of the 

χ² test, with a particular focus on its use in vision research. Using examples drawn from the published literature, we illustrate 

the relevance and utility of χ² methodologies in analyzing categorical data in clinical settings. The definitions and key concepts 

pertinent to the application of χ² tests in this review are presented in Table 1. 
 

METHODS 

Assumptions of the Χ² Test 

Although the χ² test is a non-parametric procedure, it relies on certain assumptions about the data, as is the case in parametric 

tests. Among these is the assumption that the data were obtained through random sampling [1, 13]. The key assumptions 

underlying the valid application of the χ² test are as follows. 

1. Random Sampling: Each individual or observation must appear in the table only once and must have been selected randomly 

from the population of interest [1, 13]. 

2. Frequency Data: The values entered into the cells of the contingency table must represent raw frequencies or counts of cases, 

and not percentages, proportions, or any other transformed data [1, 14]. 

3. Variable Types: Both variables under investigation should ideally be nominal, implying that the categories are qualitatively 

distinct, with no inherent or natural ordering [2, 14]. However, the χ² test may also be applied to ordinal–ordinal or nominal–

ordinal variable combinations, as long as the analysis aims to test general associations, rather than measuring correlation 

strength or detecting a linear trend [1, 15, 16]. 

4. Independence of Observations: All observations must be independent of one another. The χ² test is not appropriate if the 

groups being compared are related or matched (e.g., paired samples); in such cases, an alternative test should be used [2, 14]. 

5. Expected Frequencies: At least 80% of the cells in the contingency table should have expected frequencies of ≥ 5, and no cell 

should have an expected frequency of zero [2, 14]. 

 

Alternatives to the Χ² Test When Assumptions Are Violated 

For 2 × 2 contingency tables, if the assumptions of the χ² test (e.g., minimum expected cell counts) are not met, the assumptions 

underlying the χ² approximation are violated. When more than 20% of the cells in a contingency table have expected frequencies 

< 5, the χ² test becomes unreliable. In such cases, Fisher’s exact test provides a more accurate and appropriate alternative for 

assessing the associations between variables [11, 12]. Fisher’s exact test is classified as an exact test, in contrast to the χ² test, 

which is based on approximations [11, 12]. For larger contingency tables (greater than 2 × 2) with small expected frequencies, 

alternative tests, such as the likelihood-ratio χ² test or the Fisher–Freeman–Halton Exact Test (possibly with Monte Carlo 

simulation), are recommended to ensure valid statistical inference [17, 18]. 

 

Table 1. Definitions of key terms relevant to the chi-square (χ²) test 

Term Definition 

Categorical data 

Data in which observations are classified into discrete, mutually exclusive categories, typically 

representing qualitative attributes. Analysis involves counting the number of observations within 

each category [6, 7]. 

Observed frequency The actual number of cases or observations recorded in each cell of a contingency table [1, 6, 7]. 

Expected frequency 
The theoretically calculated number of cases that would be expected in each cell of a contingency 

table if the null hypothesis (e.g., independence of variables) were true [6, 7, 12]. 

Degrees of freedom 

For a χ² test in an r × c contingency table, the degrees of freedom are calculated as (r  −  1)  ×  (c  −  1), 

where r is the number of levels (categories) of the variable presented in rows and c is the number of 

levels of the variable presented in columns in the contingency table [12]. 
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Software Tools Supporting the Χ² Test 

Various statistical software packages support the application of the χ² test, including widely used tools, such as IBM SPSS (IBM 

Corp., Armonk, New York, USA), Python (Python Software Foundation, Lafayette Boulevard, Fredericksburg, VA, USA), and 

R (R Foundation for Statistical Computing, Vienna, Austria). These platforms offer flexible and accessible options for conducting 

χ² analyses across diverse research settings [19–21]. 

Types of Χ² Tests 

As stated earlier, the χ² test is a non-parametric statistical method primarily used for two purposes [14, 22, 23]: 

1. To evaluate the extent to which the observed data distribution fits an expected, theoretical distribution (i.e., goodness-of-

fit test) [14, 22, 23]. 

2. To test the hypothesis of no association between two or more groups, populations, or classification criteria (i.e., to assess 

independence between two categorical variables) [14, 22, 23]. 

1. Χ² Goodness-of-Fit Test 

The χ² goodness-of-fit test is used to assess whether the observed distribution (frequencies) of a single categorical variable 

conforms to an expected distribution [4, 5, 22, 23]. This type of test involves only one variable with multiple levels.  

The Pearson χ² test is widely used in this context. When the number of categories (k) is fixed, the test statistic follows an 

approximate χ² distribution with k – 1 degrees of freedom (df) when the sample size (n) becomes large [24]. 

 H₀ (null hypothesis): The observed frequencies will be consistent with the expected frequencies (i.e., the sample data will 

follow a specified distribution) [4, 22]. 

 H₁ (alternative hypothesis): The observed frequencies will not be consistent with the expected frequencies (i.e., the sample 

data will not follow the specified distribution) [4, 22]. 

2. Χ² Test of Independence 

The χ² test of independence is a two-dimensional test that is used to determine whether two categorical variables are associated. 

Specifically, it examines whether the proportions across the levels of one variable differ significantly depending on the levels of 

the other [1, 25]. 

The χ² statistic is calculated using the following formula: 

χ2= ∑
(Oi−Ei)2

Ei

n
i=1  (1), 

where O₁, O₂, ..., Oₙ are the observed frequencies, E₁, E₂, ..., Eₙ are the expected frequencies, and n is the number of cells in the 

contingency table. 

The test involves calculating the difference between the observed and expected values in each cell, squaring the differences 

to remove negative values, and dividing this value by the expected frequency to normalize the contribution of each cell. 

Summing these normalized values yields the test statistic, which is then compared to a critical value from the χ² distribution 

with df equal to (r − 1) × (c − 1), where r is the number of rows and c is the number of columns [4, 16, 22, 26]. 

 H₀: The two categorical variables will be independent [4, 22]. 

 H₁: The two categorical variables will be associated [4, 22]. 

The χ² test statistic is interpreted as follows [27]: A large difference between the observed and expected frequencies 

produces a large χ² value, leading to rejection of the null hypothesis [27]. On the other hand, a small difference yields a small χ² 

value, supporting the null hypothesis [27].  

 

The expected frequency of each cell in the contingency table is calculated by using the following formula: 

Eij= 
(ith row total)(jthcolumn total)

grand total
 = 

(ni+)(n+j)

n
 (2), 

where, Eij represents the expected frequency in the cell located in the ith row and jth column under the assumption of 

independence between the row and column variables. This expected value is obtained by multiplying the row total (ith) and 

column total (jth) for the respective cell and dividing this product by the overall sample size (grand total; n) [12, 27]. 

 

Strength of Association in Χ² Tests 

When using contingency tables to analyze categorical variables, not only should statistical significance be assessed, but the 

strength of association should also be quantified. To this end, several effect size measures can be used, including the Cramer’s 

V and Phi (φ) coefficient [1, 11]. 

Cramer’s V statistic is preferred for contingency tables larger than 2 × 2. This is interpreted similarly to a correlation 

coefficient, which ranges from 0 (complete independence) to 1 (complete dependence). Cramer’s V remains interpretable 

regardless of table dimensions, and provides a standardized measure of the effect size that accounts for table size [1, 28, 29]. 

Cramer’s V is calculated as follows [1, 28, 30]: 

Cramer’s V=√
χ2

n.df
  (3),  

where χ2 is the χ² statistic, n is the total number of observations, and df is the degrees of freedom, calculated as (r − 1) × (c − 1), 

with r and c being the number of rows and columns, respectively. 
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For 2 × 2 contingency tables, the φ coefficient is commonly used to assess effect size. It is analogous to the Pearson 

correlation coefficient and provides a measure of the degree of association between two binary variables. Similar to Cramer’s V, 

it is interpreted as a correlation coefficient, ranging from 0 (complete independence) to 1 (complete dependence). Although the 

Pearson correlation can be negative, the φ coefficient is always reported as a non-negative, absolute value [28, 29]. Notably, the 

value of the φ coefficient can vary when the rows and columns are exchanged and is only suitable for 2 × 2 tables [1, 11]. 

For 2 × 2 tables, the φ coefficient is computed to indicate the effect size by using the following formula [11, 28, 30]: 

φ=√
χ2

n
   (4) 

 

Interpretation of Effect Size 

The strength of the association can be interpreted as follows, based on the calculated effect size [28]: 

 Effect size = 0 to < 0.10 → Negligible association  

 Effect size = 0.1 to < 0.2 → Weak association  

 Effect size = 0.20 to < 0.4 → Moderate association  

 Effect size = 0.40 to < 0.60 → Relatively strong association  

 Effect size = 0.60 to < 0.80 → Strong association  

 Effect size = 0.80 to < 1.00 → Very strong association  

Beyond mere statistical significance, these thresholds assist in understanding the practical significance of a finding [1, 10, 28, 31]. 

 

Power of the Χ² Test 

The statistical power of the χ² test depends on multiple factors, including the effect size, sample size, df, and the significance 

level (α) [1, 10, 28]. Adequate power is essential for detecting true associations when they exist and for avoiding Type II errors. 

Determining an appropriate sample size is a critical component of the design of a study. Power analysis techniques allow 

calculation of the minimum number of observations required to achieve a desired level of power for a given effect size and 

significance threshold [4, 10]. When power is insufficient, studies may fail to detect meaningful differences, leading to misleading 

conclusions [1]. 

A central element in the power analysis of categorical data is Cohen’s w, a standardized effect size specific to χ² tests [10, 

32, 33]. Cohen proposed conventional thresholds for small (w = 0.10), medium (w = 0.30), and large (w = 0.50) effect sizes. These 

benchmarks have become the standard for determining the sample size requirements for categorical data analysis [10]. 
 

RESULTS and DISSCUSSION 

Stepwise Application of the Χ² Test of Independence in Examples 1–3 

To demonstrate the practical application of the χ² test of independence, we present three examples from the field of 

ophthalmology. 

 

Example 1: Association Between Vision Impairment and Sex 

Vision impairment (VI) is a significant global public health issue, with an uneven prevalence across World Health Organization 

regions. Identifying the causes and impacts of VI is essential for targeting interventions, planning effective programs, and 

prioritizing resources [34]. In this example, we examined whether sex (a nominal variable) and VI, based on the International 

Classification of Diseases (an ordinal variable), were associated. This relationship was statistically tested using the χ² test of 

independence. 

 H₀: VI and sex are independent. 

 H₁: VI and sex are associated. 

 

Table 2. Observed and expected frequencies in the category of vision impairment based on distance vision in the better eye with the best 

possible lens correction in patients referred to a low-vision rehabilitation clinic over 7 years 

Category of VI 
Observed Frequency Expected Frequency 

Men Women Total Men Women Total 

Category 1 42 32 74 44 30 74 

Category 2 171 108 279 166 113 279 

Category 3 55 31 86 51 35 86 

Category 4 46 45 91 54 37 91 

Category 5 23 13 36 22 14 36 

Category 6 1 0 1 1 0 1 

Total 338 229 567 338 229 567 

Note: Comparison between men and women. Categories 1–6 are based on the International Classification of Diseases-11 for mortality and 

morbidity statistics. Category 1, mild vision impairment; Category 2, moderate vision impairment; Category 3, severe vision impairment; 

Categories 4–6, blindness with better eye vision > +1.30 logMAR to no light perception. Expected frequencies have been rounded and are 

presented as whole numbers for ease of display. However, these values are typically decimal numbers, as they are derived from relative 

frequencies. 
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Table 3. Summarizing data for χ² statistic calculation 

Observed Frequency Expected Frequency (𝑶𝒊 − 𝑬𝒊)
𝟐

𝑬𝒊
 

42 44 0.09 

32 30 0.13 

171 166 0.15 

108 113 0.22 

55 51 0.31 

31 35 0.45 

46 54 1.18 

45 37 1.73 

23 22 0.04 

13 14 0.07 

1 1 0 

0 0 0 
 

Step 1: Present the Observed and Expected Frequencies 

In Table 2, the observed and expected frequencies (calculated using Equation 2) for each category are presented, based on a 

dataset originating from patients with low vision who attended a rehabilitation clinic at a tertiary referral center in Tehran, Iran, 

between March 20, 2012, and March 20, 2019 [34]. 

Step 2: Calculate the Degrees of Freedom 

The df for the χ² test in the contingency table was calculated using the following formula: 

df = (number of rows − 1) × (number of columns − 1) 

In this example, the table consists of six rows (VI categories) and two columns (sex categories) and excludes the totals. 

Therefore: 

df = (6 − 1) × (2 − 1) = 5 

Step 3: Compute the Χ² Statistic 

Using the χ² formula (1), we calculated the following (Table 3): 

χ2= ∑
(Oi−Ei)2

Ei

n
i=1 = 4.37, with df = 5 

Step 4: Determine Statistical Significance 

To evaluate whether the null hypothesis could be rejected, we compared the calculated χ² statistic value with the critical value 

from the χ² distribution table [35]. At α = 0.05, the critical value for 5 df is 11.07. 

Since the calculated χ² statistic value of 4.37 is less than 11.07, we cannot reject the null hypothesis. Thus, VI and sex are not 

statistically significantly associated in this dataset. 

Step 5: Evaluate the Strength of Association 

Given that the contingency table was larger than 2 × 2, the appropriate effect size measure was Cramer’s V, which was calculated 

using Equation (3): 

Cramer’s V=√
χ2

n.df
=  √

4.37

567×5
≈ 0.04 

This suggests a negligible association between VI and sex. The low Cramer’s V value agrees with the χ² test outcome and 

further supports the conclusion that these two variables are not significantly associated. 

 

Example 2: Association Between Age and First-Year Persistence with Antiglaucoma Therapy 

Monotherapy, age, and side effects are significant risk factors for discontinuation of antiglaucoma treatment. Maintaining long-

term persistence with therapy is essential to slow disease progression and to prevent irreversible vision loss. In this context, 

persistence was defined as the proportion of patients who continued taking any antiglaucoma medication, regardless of any 

changes in the specific drug, by 1 year after treatment initiation [36]. 

In this example, we evaluated whether persistence with antiglaucoma medication in the first year (a nominal variable) was 

associated with age-group (an ordinal variable). This relationship was tested using a χ² test for independence. 

 H₀: Persistence rate and age-group are independent. 

 H₁: Persistence rate and age-group are associated. 

Step 1: Present the Observed and Expected Frequencies 

Table 4 presents the observed and expected frequencies (calculated using Equation 2) for each category. The data involve patients 

categorized by age (18–44 years, 45–64 years, and 65 years or older) and their persistence with antiglaucoma therapy during the 

first year of follow-up [36]. 

Step 2: Calculate the Degrees of Freedom 

The df for this contingency table are computed as follows:  

df = (number of rows − 1) × (number of columns − 1) 

In this example, the table consists of three age groups (rows) and two persistence categories (columns), excluding the totals. 

Thus: 

df= (3 − 1) × (2 − 1) = 2 
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Table 4. Observed and expected frequencies in the category of age-group and first-year persistence with antiglaucoma drug 

use  

Age-group (years) 
Observed Frequency Expected Frequency 

Persistent Non-persistent Total Persistent Non-persistent Total 

18–44 64 9 73 67 6 73 

45–64 420 48 468 430 38 468 

≥65 1481 116 1597 1468 129 1597 

Total 1965 173 2138 1965 173 2138 

Note: Expected frequencies have been rounded and are presented as whole numbers for ease of display. However, these 

values are typically decimal numbers, as they are derived from relative frequencies. 

 

Table 5. Summarizing data for χ² statistic calculation 

Observed Frequency Expected Frequency (𝑶𝒊 − 𝑬𝒊)
𝟐

𝑬𝒊

 

64 67 0.14 

420 430 0.23 

1481 1468 0.12 

9 6 1.5 

48 38 2.63 

116 129 1.31 

 

Step 3: Compute the Χ² Statistic  

Applying formula (1), the χ² statistic is calculated as follows (Table 5): 

χ2 = 5.93, with df = 2 

Step 4: Determine Statistical Significance 

To determine whether the null hypothesis could be rejected, we compared the calculated χ² value with the critical values from 

the χ² distribution table. At α = 0.05, the critical value for 2 df was 5.99 [35]. 

Since the computed χ² statistic value of 5.93 is less than the critical value of 5.99, the null hypothesis cannot be rejected. This 

implies that age and first-year therapy persistence were not associated in this population. 

Step 5: Evaluate the Strength of Association 

As the contingency table was 3 × 2, Cramer’s V was appropriate for measuring effect size, which was calculated using Equation 

(3): 

Cramer’s V=√
χ2

n.df
=  √

5.93

2138×2
≈ 0.04 

The value of Cramer’s V indicated a very weak association between age and persistence. The small effect size was consistent 

with the results of the χ² test and reinforced the conclusion that age is not significantly associated with first-year therapy 

persistence in this sample. 

 

Example 3: Association Between Sex and Intravitreal Injection Type for Treating Diabetic Macular Edema (DME)  

Vascular endothelial growth factor (VEGF) plays a central role in retinal barrier disruption and DME development. Although 

laser photocoagulation has traditionally been the standard treatment for DME, use of intravitreal anti-VEGF injections, such as 

aflibercept and ranibizumab, has recently become more widespread and has surpassed the use of laser therapy in many cases 

[37]. 

 

Table 6. Observed and expected frequencies in sex categories with intravitreal injections of aflibercept or ranibizumab  

Intravitreal injections 
Observed Frequency Expected Frequency 

Male Female Total Male Female Total 

Aflibercept 14 39 53 15 38 53 

Ranibizumab 12 31 43 11 32 43 

Total 26 70 96 26 70 96 

Note: Expected frequencies have been rounded and are presented as whole numbers for ease of display. However, these 

values are typically decimal numbers, as they are derived from relative frequencies. 

 

Table 7. Summarizing data for χ² statistic calculation 

Observed Frequency Expected Frequency (𝑶𝒊 − 𝑬𝒊)
𝟐

𝑬𝒊

 

14 15 0.067 

12 11 0.090 

39 38 0.026 

31 32 0.031 
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In this study, we investigated whether the type of intravitreal injection (aflibercept vs. ranibizumab) (a nominal variable) 

was associated with patient sex (a nominal variable). This potential association was tested using the χ² test for independence. 

 H₀: The type of injection (aflibercept or ranibizumab) and sex are independent. 

 H₁: The type of injection and sex are associated. 

Step 1: Observed and Expected Frequencies 

Table 6 presents the observed and expected frequencies, where the expected values were calculated using formula (2), based on 

data collected from patients who received intravitreal injections of aflibercept or ranibizumab, categorized by sex [37]. 

Step 2: Calculate the Degrees of Freedom 

The df for a contingency table were computed as: 

df = (number of rows − 1) × (number of columns − 1) 

In this 2 × 2 table (two sexes and two injection types), the df was: 

df = (2 − 1) × (2 − 1) = 1 

Step 3: Compute the Χ² Statistic  

Using formula (1), the χ² statistic is calculated as follows (Table 7): 

χ2 = 0.214, with df = 1 

Step 4: Determine Statistical Significance 

At α = 0.05, the critical value for a χ² distribution with 1 df is 3.84 [35]. If the calculated statistic exceeds this value, the null 

hypothesis would be rejected. However, in this example, χ2 = 0.214. Because the χ² statistic value was smaller than the critical 

value of 3.84, the null hypothesis could not be rejected. This suggests that sex and the type of intravitreal injection administered 

was not associated in this population. 

Step 5: Evaluate the Strength of Association 

Given that the contingency table was 2 × 2, the appropriate effect size measure is the φ coefficient, which was calculated using 

formula (4): 

Φ=√
χ2

n
=  √

0.214

96
≈ 0.05 

This φ value indicates a small effect size, which was consistent with a negligible association, reinforcing the conclusion that sex 

and the choice of injection (aflibercept or ranibizumab) were not associated [37]. 
 

Stepwise Application of the Χ² Goodness-of-Fit Test in Example 4 

To demonstrate the practical application of the χ² goodness-of-fit test, we present the following example: 
 

Example 4: Goodness-of-Fit Test for Contact Lens Prescribing Patterns 

Globally, rigid gas-permeable (RGP) lenses account for approximately 10% of all contact lens fittings, whereas soft lenses make 

up over 90% of contact lens prescriptions [38, 39]. In this example, the prescription patterns of contact lenses at a university clinic 

in Trinidad and Tobago were assessed to determine whether the observed distribution was in line with global expectations [38] 

(Table 8). 

Hypotheses: 

 H₀: The observed distribution of contact lens types at a university clinic in Trinidad and Tobago matches the expected 

global distribution. 

 H₁: The observed distribution of contact lens types at a university clinic in Trinidad and Tobago differs from the 

expected global distribution. 

To perform the χ² goodness-of-fit test, expected frequencies were calculated based on the total sample size (n = 243). 

Soft contact lenses: 0.90 × 243 = 219 

RGP contact lenses: 0.10 × 243 = 24 

The df were determined using the formula: 

df = number of categories – 1 = 2 – 1 = 1 

Using the observed and expected frequencies (Table 9), the χ² statistic was computed as: 

χ² = 6.66, with df = 1 

To interpret the result, the calculated χ² statistic was compared with the critical value at α = 0.05. For 1 df, the critical value 

is 3.84, based on the χ² distribution table [35]. 

Since the χ² statistic = 6.66 is larger than 3.84, the null hypothesis is rejected. This indicates a statistically significant 

difference between the observed and expected distributions of contact lens types. 

The χ² goodness-of-fit test results suggest that the prescription pattern at this university clinic deviates significantly from 

global trends. This finding may reflect the local clinical preferences, patient demographics, and/or access to different lenses [38]. 
 

Table 8. Observed frequencies for the type of contact lenses used 

Prescribing rates of contact lenses Observed Frequency 

Soft contact lenses 207 

RGP contact lenses 36 

Total 243 
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Table 9. Summarizing the data for calculating the χ² statistic  

Prescribing rates of CLs Observed Frequency Expected Frequency 
(𝑶𝒊 − 𝑬𝒊)

𝟐

𝑬𝒊

 

Soft CL 207 219 0.66 

RGP CL 36 24 6.00 

Abbreviations: CL, contact lens; RGP, rigid gas permeable 
 

 

CONCLUSIONS 

The χ² test is a widely used, non-parametric statistical method for assessing associations between two categorical variables. Its 

strengths lie in its simplicity and applicability across a range of disciplines, including epidemiology, clinical research, and public 

health. When applied correctly, the χ² test provides valuable insights into patterns of association that might otherwise be missed 

in categorical data. 

This review outlines the step-by-step procedures for conducting the χ² tests of independence and goodness-of-fit, including 

hypothesis formulation, df calculation, test statistic interpretation, and effect size evaluation, using φ and Cramer’s V. Through 

practical examples from ophthalmology and optometry, such as treatment persistence in glaucoma, sex-based differences in 

anti-VEGF therapy, sex distribution of VI, and contact lens prescription patterns, we demonstrated how this test can be applied 

to real-world clinical questions. In our goodness-of-fit test example, assessing the pattern of contact lens usage, the χ² statistic 

exceeded the critical threshold, indicating a significant deviation between the observed and expected frequencies, and leading 

to the rejection of the null hypothesis. 

Understanding the assumptions and limitations of the χ² test is essential for clinicians and researchers, including for 

optometrists and ophthalmologists. These considerations include ensuring a sufficient sample size, adequate expected cell 

counts, and the independence of observations. Misinterpretation or misuse of the test may lead to incorrect inferences, 

compromising the validity of the study results. 

Moreover, we emphasize that complementing statistical significance with appropriate measures of effect size, such as 

Cramer’s V or the φ coefficient, provides a more nuanced understanding of the strength of associations. This is particularly 

important when statistically significant results do not translate into clinically meaningful effects. 

The χ² test is a foundational tool for categorical data analysis. Its correct application can empower eye-care professionals 

and clinical researchers to make evidence-based decisions, improve patient outcomes, and meaningfully contribute to the 

advancement of knowledge in vision science. 
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