Effects of artificial tears on keratocyte cell density after femtosecond laser in situ keratomileusis: a prospective, comparative, interventional, contralateral eye study
Medical hypothesis, discovery & innovation in optometry,
Vol. 4 No. 2 (2023),
22 June 2023
,
Page 50-56
https://doi.org/10.51329/mehdioptometry173
Abstract
Background: Flap creation during laser refractive surgery restructures the anterior cornea, particularly the stroma, reducing the keratocyte cell density (KCD). This reduced density makes it challenging to completely regenerate to the presurgical phase. The aim of the present study was to investigate the effects of two types of artificial tear (AT) interventions on KCD up to 3 months after femtosecond laser-assisted in situ keratomileusis (FS-LASIK) surgery.Methods: This prospective, double-blind, comparative, interventional, contralateral eye study recruited patients with myopia scheduled for FS-LASIK. Inclusion criteria were healthy individuals aged 19 – 25 years with moderate or high myopia, a maximum cylindrical error of - 1.25 diopters, and a maximum pupil size of 6.5 mm who had undergone FS-LASIK and completed 3 months of follow-up. Complete optometric and ophthalmologic examinations were performed. Bilateral simultaneous FS-LASIK surgery was performed using the same femtosecond laser platform as in the standard procedure. The Research Randomizer was used to determine the eye to be treated with Systane® Hydration (Alcon Laboratories, Inc., Fort Worth, TX, USA) or Systane® ULTRA (Alcon Laboratories, Inc., Fort Worth, TX, USA) AT. KCD was examined using real-time images obtained from in vivo confocal microscopy (Heidelberg Retina Tomograph 3 with the Rostock Cornea Module, HRT III RCM); Heidelberg Engineering GmbH, Heidelberg, Germany) at baseline and 1- and 3-month postoperative visits.
Results: We included 60 eyes of 30 participants with a mean (standard deviation) age of 21.34 (1.85) years and a male-to-female ratio of 1:1 who completed 3-month post-FS-LASIK surgery follow-up. KCD did not differ significantly between the two groups at any visit (all P > 0.05); nevertheless, mean KCD was initially reduced up to 1 month postoperatively and then revealed a slight increase up to 3 months postoperatively in Systane® Hydration-treated eyes and continued to reduce in Systane® ULTRA-treated eyes. Intragroup comparisons revealed that the eyes treated with ATs experienced a significant reduction in KCD between the preoperative and 1-month postoperative visits and between the preoperative and 3-month postoperative visits (all P < 0.05). Treatment-related complications were not observed.
Conclusions: Overall, KCD reduced up to 3 months post-FS-LASIK surgery. Both AT types exerted a comparable effect on postoperative KCD up to 3 months. Future studies with a more frequent administration of ATs, longer follow-up periods, and a control group are required before preliminary outcomes of the present study can be generalized.
- artificial tear
- laser assisted stromal in situ keratomileusis
- LASIK
- corneal keratocyte
- cell density
- sodium hyaluronate
References
Tabacaru B, Stanca HT. One year refractive outcomes of Femtosecond-LASIK in mild, moderate and high myopia. Rom J Ophthalmol. 2017;61(1):23-31. doi: 10.22336/rjo.2017.5 pmid: 29450367
Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB, et al. Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120(3):e5-e20. doi: 10.1016/j.ophtha.2012.08.013 pmid: 23174396
McLaren JW, Bourne WM, Maguire LJ, Patel SV. Changes in Keratocyte Density and Visual Function Five Years After Laser In Situ Keratomileusis: Femtosecond Laser Versus Mechanical Microkeratome. Am J Ophthalmol. 2015;160(1):163-70. doi: 10.1016/j.ajo.2015.04.006 pmid: 25868758
Netto MV, Mohan RR, Medeiros FW, Dupps WJ Jr, Sinha S, Krueger RR, et al. Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. J Refract Surg. 2007;23(7):667-76. doi: 10.3928/1081-597X-20070901-05 pmid: 17912936
Hilmi MR, Khairidzan MK, Azemin ZC, Azami MH, Ariffin AE. Measurement of contrast sensitivity using the M&S Smart System II compared with the standard Pelli–Robson chart in patients with primary pterygium. Makara Journal of Health Research. 2018;22(3):9. doi: 10.7454/msk.v22i3.9978
Chan JW, Edwards MH, Woo GC, Woo VC. Contrast sensitivity after laser in situ keratomileusis. one-year follow-up. J Cataract Refract Surg. 2002;28(10):1774-9. doi: 10.1016/s0886-3350(02)01499-2 pmid: 12388027
Zhang Y, Lu XY, Hu RJ, Fan FL, Jin XM. Evaluation of artificial tears on cornea epithelium healing. Int J Ophthalmol. 2018;11(7):1096-1101. doi: 10.18240/ijo.2018.07.04 pmid: 30046523
Watson SL, Daniels JT, Geerling G, Dart JK. Clinical trials of therapeutic ocular surface medium for moderate to severe dry eye. Cornea. 2010;29(11):1241-6. doi: 10.1097/ICO.0b013e3181d82f5e pmid: 20697273
Lin T, Gong L. Sodium hyaluronate eye drops treatment for superficial corneal abrasion caused by mechanical damage: a randomized clinical trial in the People's Republic of China. Drug Des Devel Ther. 2015;9:687-94. doi: 10.2147/DDDT.S77270 pmid: 25678773
Mohd RH, Che AM, Ithnin MH. Clinical Features of Lid Margin, Meibomian Gland and Tear Film Changes in Patients with Primary Pterygium. J Ophthalmic Res Ocular Care. 2022;5(1):92-6. doi: 10.36959/936/576
Hilmi MR, Che Azemin MZ, Mohd Kamal K, Mohd Tamrin MI, Abdul Gaffur N, Tengku Sembok TM. Prediction of Changes in Visual Acuity and Contrast Sensitivity Function by Tissue Redness after Pterygium Surgery. Curr Eye Res. 2017;42(6):852-856. doi: 10.1080/02713683.2016.1250277 pmid: 28118054
Mohd Radzi H, Khairidzan MK, Mohd Zulfaezal CA, Azrin EA. Corneo-pterygium total area measurements utilising image analysis method. J Optom. 2019;12(4):272-277. doi: 10.1016/j.optom.2019.04.001 pmid: 31097348
Hilmi MR, Kamal KM, Ariffin AE, Norazmar N, Maruziki NN, Musa NH, et al. Effects of different types of primary pterygium on changes in oculovisual function. Sains Malaysiana. 2020;49(2):383-8. doi: 10.17576/jsm-2020-4902-16
Rejab NS, Hilmi MR, Kamal KM. Validation of IVCM In Measuring Sub-Basal Nerve Plexus and Keratocyte Cell Density in Corneal Wound Healing. J Ophthalmic Res Vis Care. 2022;2(1). doi: 10.54289/JORVC2200105
Cook WH, McKelvie J, Wallace HB, Misra SL. Comparison of higher order wavefront aberrations with four aberrometers. Indian J Ophthalmol. 2019;67(7):1030-1035. doi: 10.4103/ijo.IJO_1464_18 pmid: 31238402
Moshirfar M, Motlagh MN, Murri MS, Momeni-Moghaddam H, Ronquillo YC, Hoopes PC. Galilei Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part II. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):204-218 pmid: 31598521
Xu Y, Deng J, Zhang B, Xu X, Cheng T, Wang J, et al. Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents. Br J Ophthalmol. 2023;107(6):862-868. doi: 10.1136/bjophthalmol-2021-319769 pmid: 35027355
Foulks GN, Pflugfelder SC. New testing options for diagnosing and grading dry eye disease. Am J Ophthalmol. 2014;157(6):1122-9. doi: 10.1016/j.ajo.2014.03.002 pmid: 24631478
Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int. 2015;112(5):71-81; quiz 82. doi: 10.3238/arztebl.2015.0071 pmid: 25686388
Reinstein DZ, Carp GI, Lewis TA, Archer TJ, Gobbe M. Outcomes for Myopic LASIK With the MEL 90 excimer laser. J Refract Surg. 2015;31(5):316-21. doi: 10.3928/1081597X-20150423-05 pmid: 25974970
Jadav DS, Desai N, Taylor KR, Caldwell MC, Panday VA, Reilly CD. Visual outcomes after femtosecond laser in situ keratomileusis flap complications. J Cataract Refract Surg. 2015;41(11):2487-92. doi: 10.1016/j.jcrs.2015.05.024 pmid: 26703500
Shtein RM, Michelotti MM, Kaplan A, Mian SI. Association of surgeon experience with outcomes of femtosecond LASIK. Ophthalmic Surg Lasers Imaging. 2012;43(6):489-94. doi: 10.3928/15428877-20120920-02 pmid: 23776949
Urbaniak GC, Plous S (2013).'Research Randomizer (Version 4.0) [Computer software]'. Available at: http://www.randomizer.org/ (Accessed: June 22, 2019)
Petroll WM, Weaver M, Vaidya S, McCulley JP, Cavanagh HD. Quantitative 3-dimensional corneal imaging in vivo using a modified HRT-RCM confocal microscope. Cornea. 2013;32(4):e36-43. doi: 10.1097/ICO.0b013e31825ec44e pmid: 23051907
Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf. 2021;19:290-306. doi: 10.1016/j.jtos.2020.10.006 pmid: 33127599
Chistyakov DV, Astakhova AA, Azbukina NV, Goriainov SV, Chistyakov VV, Sergeeva MG. High and Low Molecular Weight Hyaluronic Acid Differentially Influences Oxylipins Synthesis in Course of Neuroinflammation. Int J Mol Sci. 2019;20(16):3894. doi: 10.3390/ijms20163894 pmid: 31405034
Aragona P, Simmons PA, Wang H, Wang T. Physicochemical Properties of Hyaluronic Acid-Based Lubricant Eye Drops. Transl Vis Sci Technol. 2019;8(6):2. doi: 10.1167/tvst.8.6.2 pmid: 31695963
Ho WT, Chiang TH, Chang SW, Chen YH, Hu FR, Wang IJ. Enhanced corneal wound healing with hyaluronic acid and high-potassium artificial tears. Clin Exp Optom. 2013;96(6):536-41. doi: 10.1111/cxo.12073 pmid: 23782164
Dahiya P, Kamal R. Hyaluronic Acid: a boon in periodontal therapy. N Am J Med Sci. 2013;5(5):309-15. doi: 10.4103/1947-2714.112473 pmid: 23814761
Gomes JA, Amankwah R, Powell-Richards A, Dua HS. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br J Ophthalmol. 2004;88(6):821-5. doi: 10.1136/bjo.2003.027573 pmid: 15148219
Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds. 2016;28(3):78-88. pmid: 26978861
Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem. 2001;276(22):19420-30. doi: 10.1074/jbc.M011004200 pmid: 11278811
Baudouin C, Cochener B, Pisella PJ, Girard B, Pouliquen P, Cooper H, et al. Randomized, phase III study comparing osmoprotective carboxymethylcellulose with sodium hyaluronate in dry eye disease. Eur J Ophthalmol. 2012;22(5):751-61. doi: 10.5301/ejo.5000117 pmid: 22287172
Carlson E, Kao WWY, Ogundele A. Impact of Hyaluronic Acid-Containing Artificial Tear Products on Reepithelialization in an In Vivo Corneal Wound Model. J Ocul Pharmacol Ther. 2018;34(4):360-364. doi: 10.1089/jop.2017.0080 pmid: 29394128
Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012;4(3):253-8. doi: 10.4161/derm.21923 pmid: 23467280
Belalcázar-Rey S, Sánchez Huerta V, Ochoa-Tabares JC, Altamirano Vallejo S, Soto-Gómez A, Suárez-Velasco R, et al. Efficacy and Safety of Sodium Hyaluronate/chondroitin Sulfate Preservative-free Ophthalmic Solution in the Treatment of Dry Eye: A Clinical Trial. Curr Eye Res. 2021;46(7):919-929. doi: 10.1080/02713683.2020.1849733 pmid: 33289602
Alvani A, Hashemi H, Pakravan M, Mahbod M, Seyedian MA, Amanzadeh K, et al. Post-LASIK Ectasia Versus Keratoconus: An In Vivo Confocal Microscopy Study. Cornea. 2020;39(8):1006-1012. doi: 10.1097/ICO.0000000000002318 pmid: 32341315
Li M, Niu L, Qin B, Zhou Z, Ni K, Le Q, et al. Confocal comparison of corneal reinnervation after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). PLoS One. 2013;8(12):e81435. doi: 10.1371/journal.pone.0081435 pmid: 24349069
Petroll WM, Robertson DM. In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module. Ocul Surf. 2015;13(3):187-203. doi: 10.1016/j.jtos.2015.05.002 pmid: 25998608
Twa MD, Giese MJ. Assessment of corneal thickness and keratocyte density in a rabbit model of laser in situ keratomileusis using scanning laser confocal microscopy. Am J Ophthalmol. 2011;152(6):941-953.e1. doi: 10.1016/j.ajo.2011.05.023 pmid: 21871603
Niederer RL, Perumal D, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea. Invest Ophthalmol Vis Sci. 2008;49(7):2964-70. doi: 10.1167/iovs.07-0968 pmid: 18579760
Moilanen JA, Holopainen JM, Vesaluoma MH, Tervo TM. Corneal recovery after lasik for high myopia: a 2-year prospective confocal microscopic study. Br J Ophthalmol. 2008;92(10):1397-402. doi: 10.1136/bjo.2007.126821 pmid: 18650214
Cañadas P, de Benito-Llopis L, Hernández-Verdejo JL, Teus MA. Comparison of keratocyte density after femtosecond laser vs mechanical microkeratome from 3 months up to 5 years after LASIK. Graefes Arch Clin Exp Ophthalmol. 2013;251(9):2171-9. doi: 10.1007/s00417-013-2357-9 pmid: 23657729
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times