An update on RPE cell senescence as a key contributor to age-related macular degeneration: support from current and experimental treatments
Medical hypothesis, discovery & innovation in optometry,
Vol. 4 No. 2 (2023),
22 June 2023
,
Page 83-94
https://doi.org/10.51329/mehdioptometry177
Abstract
Background: Age-related macular degeneration (AMD) is a major cause of vision loss. Its prevalence has increased over the past decade. This increase is partly due to the scarcity of preventive and therapeutic interventions for this disorder, except when it is in its advanced neovascular form. Discovery of effective treatments for AMD is complicated by the multifactorial pathology of the disorder. Thus, it is difficult to determine which potential disease mechanism to target in order to achieve the greatest clinical benefit.Hypothesis: Over a decade ago, it was hypothesized that many of the pathologies observed in AMD stem from retinal pigment epithelial (RPE) cell senescence. This provided a potentially key mechanistic target. Supporting this hypothesis, many of the agents that were in development or clinical use for AMD at that time influenced RPE cell senescence, although they were not utilized for this specific effect. The present article re-evaluates this hypothesis by exploring the logical prediction that if RPE cell senescence is a key contributor to AMD, then inhibition of RPE cell senescence is important in the treatment of AMD. If this hypothesis holds true, the inhibition or reversal of RPE cell senescence or its effects should be a common characteristic of new treatments for AMD.
Conclusions: Over the past decade, many agents have been investigated for the treatment of AMD. Although a few were designed to address cell senescence, the majority targeted other potential pathological mechanisms. In support of our original hypothesis, we now present evidence that many of the newer agents investigated for the treatment of AMD, even those that were not meant to reduce cell senescence or its effects, have this function as part of their activity profiles. Further experimental studies or clinical trials exploring the safety and efficacy of inhibiting RPE cell senescence or reversing its effects are needed to pave the way for improved AMD treatment.
- age-related macular degeneration
- retinal pigment epithelium
- cell senescence
- VEGF
- vascular endothelial growth factor
- dry AMD
- exudative AMD
- wet macular degeneration
- geographic atrophy
- macular degeneration
References
Wang Y, Zhong Y, Zhang L, Wu Q, Tham Y, Rim TH, et al. Global Incidence, Progression, and Risk Factors of Age-Related Macular Degeneration and Projection of Disease Statistics in 30 Years: A Modeling Study. Gerontology. 2022;68(7):721-735. doi: 10.1159/000518822 pmid: 34569526
GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):e144-e160. doi: 10.1016/S2214-109X(20)30489-7. Erratum in: Lancet Glob Health. 2021;9(4):e408. pmid: 33275949
Furtado JM, Jonas J, Peto T, Steinmetz JD, Briant PS, Wong TY, et al. Global vision loss due to age-related macular degeneration. Investigative Ophthalmology & Visual Science. 2021;62(8):3504.
Cabral de Guimaraes TA, Daich Varela M, Georgiou M, Michaelides M. Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. Br J Ophthalmol. 2022;106(3):297-304. doi: 10.1136/bjophthalmol-2020-318452 pmid: 33741584
Taskintuna I, Elsayed ME, Schatz P. Update on Clinical Trials in Dry Age-related Macular Degeneration. Middle East Afr J Ophthalmol. 2016;23(1):13-26. doi: 10.4103/0974-9233.173134 pmid: 26957835
Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313-1330. doi: 10.2147/CIA.S143508 pmid: 28860733
Hadziahmetovic M, Malek G. Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Front Cell Dev Biol. 2021;8:612812. doi: 10.3389/fcell.2020.612812 pmid: 33569380
Flores R, Carneiro Â, Vieira M, Tenreiro S, Seabra MC. Age-Related Macular Degeneration: Pathophysiology, Management, and Future Perspectives. Ophthalmologica. 2021;244(6):495-511. doi: 10.1159/000517520 pmid: 34130290
Samanta A, Aziz AA, Jhingan M, Singh SR, Khanani AM, Chhablani J. Emerging Therapies in Neovascular Age-Related Macular Degeneration in 2020. Asia Pac J Ophthalmol (Phila). 2020;9(3):250-259. doi: 10.1097/APO.0000000000000291 pmid: 32511123
Ciulla TA, Rosenfeld PJ. Antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. Curr Opin Ophthalmol. 2009;20(3):158-65. doi: 10.1097/ICU.0b013e32832d25b3 pmid: 19417570
Wallsh JO, Gallemore RP. Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options. Cells. 2021;10(5):1049. doi: 10.3390/cells10051049 pmid: 33946803
Kaiser SM, Arepalli S, Ehlers JP. Current and Future Anti-VEGF Agents for Neovascular Age-Related Macular Degeneration. J Exp Pharmacol. 2021;13:905-912. doi: 10.2147/JEP.S259298 pmid: 34616189
Pavluk L, Kaya M (2023). 'FDA Approves SYFOVRE™ (pegcetacoplan injection) as the First and Only Treatment for Geographic Atrophy (GA), a Leading Cause of Blindness'. Available at: https://investors.apellis.com/news-releases/news-release-details/fda-approves-syfovretm-pegcetacoplan-injection-first-and-only (Accessed: April 09, 2023)
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417-36. doi: 10.1001/archopht.119.10.1417. Erratum in: Arch Ophthalmol. 2008;126(9):1251. pmid: 11594942
Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005-15. doi: 10.1001/jama.2013.4997. Erratum in: JAMA. 2013;310(2):208. pmid: 23644932
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021;3(10):1290-1301. doi: 10.1038/s42255-021-00483-8 pmid: 34663974
Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299-309. doi: 10.1038/s41576-019-0099-1 pmid: 30760854
Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75-95. doi: 10.1038/s41580-020-00314-w pmid: 33328614
Ruan Y, Jiang S, Musayeva A, Gericke A. Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel). 2020;9(8):761. doi: 10.3390/antiox9080761 pmid: 32824523
B Domènech E, Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants (Basel). 2020;9(4):347. doi: 10.3390/antiox9040347 pmid: 32340220
Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration. Redox Biol. 2020;37:101779. doi: 10.1016/j.redox.2020.101779 pmid: 33172789
Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187-95. doi: 10.1111/j.1474-9726.2006.00199.x pmid: 16626397
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation. 2021;18(1):32. doi: 10.1186/s12974-021-02088-0 pmid: 33482879
Burton DG. Cellular senescence, ageing and disease. Age (Dordr). 2009;31(1):1-9. doi: 10.1007/s11357-008-9075-y pmid: 19234764
Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295-317. doi: 10.1016/j.mam.2012.04.005 pmid: 22542780
Spaide R (2006). 'Etiology of late-age-related macular disease'. In Alfaro III DV, Liggett PE, Mieler WF, Quirox-Mercado H, Jager RD, Tano Y (Ed.). Age-related macular degeneration: A comprehensive textbook (pp. 23-39). Philadelphia: Lippincot, Williams and Wilkins. ISBN 13: 978-0-7817-3899-6.
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol. 2020;48(8):1043-1056. doi: 10.1111/ceo.13834 pmid: 32710488
Thompson W (2006). 'Classification of age-related macular disease'. In Alfaro III DV, Liggett PE, Mieler WF, Quirox-Mercado H, Jager RD, Tano Y (Ed.). Age-related macular degeneration: A comprehensive textbook (pp. 44-52). Philadelphia: Lippincot, Williams and Wilkins. ISBN 13: 978-0-7817-3899-6.
Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421-4. doi: 10.1126/science.1110189 pmid: 15761121
O'Leary F, Campbell M. The blood-retina barrier in health and disease. FEBS J. 2023;290(4):878-891. doi: 10.1111/febs.16330 pmid: 34923749
Ford KM, Saint-Geniez M, Walshe T, Zahr A, D'Amore PA. Expression and role of VEGF in the adult retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011;52(13):9478-87. doi: 10.1167/iovs.11-8353 pmid: 22058334
Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201-218. doi: 10.1016/j.preteyeres.2017.03.002 pmid: 28336424
Kozlowski MR. RPE cell senescence: a key contributor to age-related macular degeneration. Med Hypotheses. 2012;78(4):505-10. doi: 10.1016/j.mehy.2012.01.018 pmid: 22296808
Minamino T, Komuro I. Vascular cell senescence: contribution to atherosclerosis. Circ Res. 2007;100(1):15-26. doi: 10.1161/01.RES.0000256837.40544.4a pmid: 17204661
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482-96. doi: 10.1038/nrm3823 pmid: 24954210
Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192(4):547-56. doi: 10.1083/jcb.201009094 pmid: 21321098
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554-563. doi: 10.1016/j.ebiom.2018.12.052 pmid: 30616998
Salaami O, Kuo CL, Drake MT, Kuchel GA, Kirkland JL, Pignolo RJ. Antidiabetic Effects of the Senolytic Agent Dasatinib. Mayo Clin Proc. 2021;96(12):3021-3029. doi: 10.1016/j.mayocp.2021.06.025 pmid: 34772496
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci. 2018;19(10):2937. doi: 10.3390/ijms19102937 pmid: 30261683
Blasiak J, Piechota M, Pawlowska E, Szatkowska M, Sikora E, Kaarniranta K. Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role? Oxid Med Cell Longev. 2017;2017:5293258. doi: 10.1155/2017/5293258 pmid: 29225722
Sreekumar PG, Hinton DR, Kannan R. The Emerging Role of Senescence in Ocular Disease. Oxid Med Cell Longev. 2020;2020:2583601. doi: 10.1155/2020/2583601 pmid: 32215170
Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res. 2003;76(4):397-403. doi: 10.1016/s0014-4835(03)00023-x pmid: 12634104
Majji AB, Cao J, Chang KY, Hayashi A, Aggarwal S, Grebe RR, et al. Age-related retinal pigment epithelium and Bruch's membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci. 2000;41(12):3936-42. pmid: 11053297
Blitzer AL, Ham SA, Colby KA, Skondra D. Association of Metformin Use With Age-Related Macular Degeneration: A Case-Control Study. JAMA Ophthalmol. 2021;139(3):302-309. doi: 10.1001/jamaophthalmol.2020.6331 pmid: 33475696
Chen YY, Shen YC, Lai YJ, Wang CY, Lin KH, Feng SC, et al. Association between Metformin and a Lower Risk of Age-Related Macular Degeneration in Patients with Type 2 Diabetes. J Ophthalmol. 2019;2019:1649156. doi: 10.1155/2019/1649156 pmid: 31781371
Brown EE, Ball JD, Chen Z, Khurshid GS, Prosperi M, Ash JD. The Common Antidiabetic Drug Metformin Reduces Odds of Developing Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2019;60(5):1470-1477. doi: 10.1167/iovs.18-26422 pmid: 30973575
Stewart JM, Lamy R, Wu F, Keenan JD. Relationship between Oral Metformin Use and Age-Related Macular Degeneration. Ophthalmol Retina. 2020;4(11):1118-1119. doi: 10.1016/j.oret.2020.06.003 pmid: 32525055
Lee H, Jeon HL, Park SJ, Shin JY. Effect of Statins, Metformin, Angiotensin-Converting Enzyme Inhibitors, and Angiotensin II Receptor Blockers on Age-Related Macular Degeneration. Yonsei Med J. 2019;60(7):679-686. doi: 10.3349/ymj.2019.60.7.679 pmid: 31250582
Eton EA, Wubben TJ, Besirli CG, Hua P, McGeehan B, VanderBeek BL. Association of metformin and development of dry age-related macular degeneration in a U.S. insurance claims database. Eur J Ophthalmol. 2022;32(1):417-423. doi: 10.1177/1120672121997288 pmid: 33607930
Stewart JM (2019). Metformin for the Minimization of Geographic Atrophy Progression in Patients With AMD (METforMIN). ClinicalTrials.gov Identifier: NCT02684578. Available at: https://clinicaltrials.gov/ct2/show/NCT02684578 (Accessed: November 20, 2022)
Ahmed SM, Elshenawy SE, Sedky S, Elmehrath AO, El-Badri N. Pancreatic ?-Cell senescence: mechanisms and association with diabetes. EMJ. 2021;6(1):59-72. doi: 10.33590/emj/20-00128
Aguayo-Mazzucato C, Andle J, Lee TB Jr, Midha A, Talemal L, Chipashvili V, et al. Acceleration of ? Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metab. 2019;30(1):129-142.e4. doi: 10.1016/j.cmet.2019.05.006 pmid: 31155496
Berlanga-Acosta JA, Guillén-Nieto GE, Rodríguez-Rodríguez N, Mendoza-Mari Y, Bringas-Vega ML, Berlanga-Saez JO, et al. Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Front Endocrinol (Lausanne). 2020;11:573032. doi: 10.3389/fendo.2020.573032 pmid: 33042026
Helman A, Avrahami D, Klochendler A, Glaser B, Kaestner KH, Ben-Porath I, et al. Effects of ageing and senescence on pancreatic ?-cell function. Diabetes Obes Metab. 2016;18 Suppl 1:58-62. doi: 10.1111/dom.12719 pmid: 27615132
Lee JH, Lee J. Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic ?-Cell Dysfunction and Senescence in Type 2 Diabetes. Int J Mol Sci. 2022;23(9):4843. doi: 10.3390/ijms23094843 pmid: 35563231
Murakami T, Inagaki N, Kondoh H. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic ? Cells. Front Endocrinol (Lausanne). 2022;13:869414. doi: 10.3389/fendo.2022.869414 pmid: 35432205
Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes. 2015;64(7):2289-98. doi: 10.2337/db14-1820 pmid: 26106186
Palmer AK, Tchkonia T, Kirkland JL. Senolytics: Potential for Alleviating Diabetes and Its Complications. Endocrinology. 2021;162(8):bqab058. doi: 10.1210/endocr/bqab058 pmid: 33705532
Anisimov VN, Semenchenko AV, Yashin AI. Insulin and longevity: antidiabetic biguanides as geroprotectors. Biogerontology. 2003;4(5):297-307. doi: 10.1023/a:1026299318315 pmid: 14618027
Cao F, Wu K, Zhu YZ, Bao ZW. Roles and Mechanisms of Dipeptidyl Peptidase 4 Inhibitors in Vascular Aging. Front Endocrinol (Lausanne). 2021;12:731273. doi: 10.3389/fendo.2021.731273 pmid: 34489872
Madonna R, Doria V, Minnucci I, Pucci A, Pierdomenico DS, De Caterina R. Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J Cell Mol Med. 2020;24(21):12331-12340. doi: 10.1111/jcmm.15699 pmid: 32940423
Fang J, Yang J, Wu X, Zhang G, Li T, Wang X, et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell. 2018;17(4):e12765. doi: 10.1111/acel.12765 pmid: 29659168
Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-?B activation. Aging Cell. 2013;12(3):489-98. doi: 10.1111/acel.12075 pmid: 23521863
Zhang C, Chen M, Zhou N, Qi Y. Metformin Prevents H?O?-Induced Senescence in Human Lens Epithelial B3 Cells. Med Sci Monit Basic Res. 2020;26:e923391. doi: 10.12659/MSMBR.923391 pmid: 32336745
Chen D, Xia D, Pan Z, Xu D, Zhou Y, Wu Y, et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis. 2016;7(10):e2441. doi: 10.1038/cddis.2016.334 pmid: 27787519
Algire C, Moiseeva O, Deschênes-Simard X, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila). 2012;5(4):536-43. doi: 10.1158/1940-6207.CAPR-11-0536 pmid: 22262811
Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt A):1115-1128. doi: 10.1016/j.bbadis.2018.01.018 pmid: 29366775
Mao Z, Liu W, Huang Y, Sun T, Bao K, Feng J, et al. Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species. Acta Pharm Sin B. 2022;12(2):665-677. doi: 10.1016/j.apsb.2021.08.007 pmid: 35256938
Chen L, Bi B, Zeng J, Zhou Y, Yang P, Guo Y, et al. Rosiglitazone ameliorates senescence-like phenotypes in a cellular photoaging model. J Dermatol Sci. 2015;77(3):173-81. doi: 10.1016/j.jdermsci.2015.01.007 pmid: 25703056
Kozlowski MR, Grossman B, Kneeland A, Zemski S, Crandell A, Kozlowski RE. Inhibition of Retinal Pigment Epithelial Cell Senescence by Metformin: Implications for the Treatment of Macular Degeneration. Japanese Journal of Ophthalmology and Research. 2020;2(1):1-5. doi:10.31546/2732-4516.1005
Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R, et al. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. Elife. 2021;10:e62635. doi: 10.7554/eLife.62635 pmid: 34544550
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-1585. doi: 10.1007/s00125-017-4342-z pmid: 28776086
Kuppermann BD, Patel SS, Boyer DS, Augustin AJ, Freeman WR, Kerr KJ, et al; Brimo DDS Gen 1 Study Group. Phase 2 study of the safety and efficacy of brimonidine drug delivery system (brimo dds) generation 1 in patients with geographic atrophy secondary to age-related macular degeneration. Retina. 2021;41(1):144-155. doi: 10.1097/IAE.0000000000002789 pmid: 32134802
Saylor M, McLoon LK, Harrison AR, Lee MS. Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch Ophthalmol. 2009;127(4):402-6. doi: 10.1001/archophthalmol.2009.9 pmid: 19365015
Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun. 2007;359(1):108-14. doi: 10.1016/j.bbrc.2007.05.067 pmid: 17532297
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells. 2021;10(11):3242. doi: 10.3390/cells10113242 pmid: 34831463
Martin M, Blom AM. Complement in removal of the dead - balancing inflammation. Immunol Rev. 2016;274(1):218-232. doi: 10.1111/imr.12462 pmid: 27782329
Romashkan S, Chang H, Hadley EC. National Institute on Aging Workshop: repurposing drugs or dietary supplements for their senolytic or senomorphic effects: considerations for clinical trials. The Journals of Gerontology: Series A. 2021;76(6):1144-52. doi: 10.1093/gerona/glab028
Bhisitkul R, Klier S, Tsuruda P, Xie B, Masaki L, Bautista J, et al. UBX1325, A Novel Senolytic Treatment for Patients with Advanced DME or wet AMD: 24-Week Results of a Phase 1 Study. Investigative Ophthalmology & Visual Science. 2022;63(7):4287.
Chung H, Kim C. Nutlin-3a for age-related macular degeneration. Aging (Albany NY). 2022;14(14):5614-5616. doi: 10.18632/aging.204187 pmid: 35849498
Chae JB, Jang H, Son C, Park CW, Choi H, Jin S, et al. Targeting senescent retinal pigment epithelial cells facilitates retinal regeneration in mouse models of age-related macular degeneration. Geroscience. 2021;43(6):2809-2833. doi: 10.1007/s11357-021-00457-4. Erratum in: Geroscience. 2022;44(3):1885. pmid: 34601706
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104-113. doi: 10.1038/cdd.2017.169 pmid: 29149101
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49-63. doi: 10.1038/nrm3722 pmid: 24355989
Minturn RJ, Bracha P, Klein MJ, Chhablani J, Harless AM, Maturi RK. Intravitreal sirolimus for persistent, exudative age-related macular degeneration: a Pilot Study. Int J Retina Vitreous. 2021;7(1):11. doi: 10.1186/s40942-021-00281-0 pmid: 33593448
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17(8):1049-61. doi: 10.1038/ncb3195. Erratum in: Nat Cell Biol. 2021;23(5):564-565. pmid: 26147250
Ekshyyan O, Khandelwal AR, Rong X, Moore-Medlin T, Ma X, Alexander JS, et al. Rapamycin targets Interleukin 6 (IL-6) expression and suppresses endothelial cell invasion stimulated by tumor cells. Am J Transl Res. 2016;8(11):4822-4830. pmid: 27904683
Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology. 2018;64(2):127-134. doi: 10.1159/000484629 pmid: 29190625
Chen Y, Wang J, Cai J, Sternberg P. Altered mTOR signaling in senescent retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2010;51(10):5314-9. doi: 10.1167/iovs.10-5280 pmid: 20445122
Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo AM. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87. doi: 10.1016/j.redox.2015.11.011 pmid: 26654980
Lazzarini R, Nicolai M, Pirani V, Mariotti C, Di Primio R. Effects of senescent secretory phenotype acquisition on human retinal pigment epithelial stem cells. Aging (Albany NY). 2018;10(11):3173-3184. doi: 10.18632/aging.101624 pmid: 30444724
Chalam KV, Grover S, Sambhav K, Balaiya S, Murthy RK. Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration. J Ophthalmol. 2014;2014:502174. doi: 10.1155/2014/502174 pmid: 25110587
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593. doi: 10.3389/fcell.2021.645593 pmid: 33855023
Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Nissen MH, Sørensen TL. Systemic Levels of Interleukin-6 Correlate With Progression Rate of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2019;60(1):202-208. doi: 10.1167/iovs.18-25878 pmid: 30644965
Yildirim Z, Ucgun NI, Yildirim F, Sepici-Dincel A. Choroidal neovascular membrane in age-related macular degeneration is associated with increased interleukin-6. International Journal of Gerontology. 2012;6(2):101-4. doi: 10.1016/j.ijge.2012.01.018
Nahavandipour A, Krogh Nielsen M, Sørensen TL, Subhi Y. Systemic levels of interleukin-6 in patients with age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol. 2020;98(5):434-444. doi: 10.1111/aos.14402 pmid: 32180348
Seddon JM, George S, Rosner B, Rifai N. Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol. 2005;123(6):774-82. doi: 10.1001/archopht.123.6.774 pmid: 15955978
Sato K, Takeda A, Hasegawa E, Jo YJ, Arima M, Oshima Y, et al. Interleukin-6 plays a crucial role in the development of subretinal fibrosis in a mouse model. Immunol Med. 2018;41(1):23-29. doi: 10.1080/09114300.2018.1451609 pmid: 30938258
Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339(1):269-80. doi: 10.1007/s00441-009-0834-6 pmid: 19693543
Pan L, Zhao Y, Yuan Z, Qin G. Research advances on structure and biological functions of integrins. Springerplus. 2016;5(1):1094. doi: 10.1186/s40064-016-2502-0 pmid: 27468395
Shaw LT, Mackin A, Shah R, Jain S, Jain P, Nayak R, et al. Risuteganib-a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin Investig Drugs. 2020;29(6):547-554. doi: 10.1080/13543784.2020.1763953 pmid: 32349559
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439-52. doi: 10.1001/archopht.119.10.1439. Erratum in: Arch Ophthalmol. 2008;126(9):1251. pmid: 11594943
Widmaier M, Rognoni E, Radovanac K, Azimifar SB, Fässler R. Integrin-linked kinase at a glance. J Cell Sci. 2012;125(Pt 8):1839-43. doi: 10.1242/jcs.093864 pmid: 22637643
Li Z, Chen X, Xie Y, Shi S, Feng Z, Fu B, et al. Expression and significance of integrin-linked kinase in cultured cells, normal tissue, and diseased tissue of aging rat kidneys. J Gerontol A Biol Sci Med Sci. 2004;59(10):984-96. doi: 10.1093/gerona/59.10.b984 pmid: 15528771
Chen X, Li Z, Feng Z, Wang J, Ouyang C, Liu W, et al. Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts. J Gerontol A Biol Sci Med Sci. 2006;61(12):1232-45. doi: 10.1093/gerona/61.12.1232 pmid: 17234816
Troyano-Suárez N, del Nogal-Avila M, Mora I, Sosa P, López-Ongil S, Rodriguez-Puyol D, et al. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression. Oxid Med Cell Longev. 2015;2015:416738. doi: 10.1155/2015/416738. Erratum in: Oxid Med Cell Longev. 2016;2016:8392708. pmid: 26583057
Olmos G, López-Ongil S, Ruiz Torres MP. Integrin-linked kinase: A new actor in the ageing process? Exp Gerontol. 2017;100:87-90. doi: 10.1016/j.exger.2017.10.026 pmid: 29101014
Stewart MW, Garg S, Newman EM, Jeffords E, Konopi?ska J, Jackson S, et al. Safety and Therapeutic Effects of Orally Administered Akst4290 in Newly Diagnosed Neovascular Age-Related Macular Degeneration. Retina. 2022;42(6):1038-1046. doi: 10.1097/IAE.0000000000003446 pmid: 35537111
Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature. 2009;460(7252):225-30. doi: 10.1038/nature08151 pmid: 19525930
Hoefer J, Luger M, Dal-Pont C, Culig Z, Schennach H, Jochberger S. The "Aging Factor" Eotaxin-1 (CCL11) Is Detectable in Transfusion Blood Products and Increases with the Donor's Age. Front Aging Neurosci. 2017;9:402. doi: 10.3389/fnagi.2017.00402 pmid: 29249965
Zayed M, Iohara K, Watanabe H, Nakashima M. CCR3 antagonist protects against induced cellular senescence and promotes rejuvenation in periodontal ligament cells for stimulating pulp regeneration in the aged dog. Sci Rep. 2020;10(1):8631. doi: 10.1038/s41598-020-65301-9 pmid: 32451381
Bae K, Noh SR, Kang SW, Kim ES, Yu SY. Angiographic Subtypes of Neovascular Age-related Macular Degeneration in Korean: A New Diagnostic Challenge. Sci Rep. 2019;9(1):9701. doi: 10.1038/s41598-019-46235-3 pmid: 31273295
Sharma K, Sharma NK, Singh R, Anand A. Exploring the role of VEGF in Indian Age related macular degeneration. Ann Neurosci. 2015;22(4):232-7. doi: 10.5214/ans.0972.7531.220408 pmid: 26526736
Shahidatul-Adha M, Zunaina E, Aini-Amalina MN. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients. Sci Rep. 2022;12(1):4423. doi: 10.1038/s41598-022-08492-7 pmid: 35292705
Edwards AO, Malek G. Molecular genetics of AMD and current animal models. Angiogenesis. 2007;10(2):119-32. doi: 10.1007/s10456-007-9064-2 pmid: 17372852
Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med. 2012;33(4):487-509. doi: 10.1016/j.mam.2012.06.003 pmid: 22705444
Zeiss CJ. Animals as models of age-related macular degeneration: an imperfect measure of the truth. Vet Pathol. 2010;47(3):396-413. doi: 10.1177/0300985809359598 pmid: 20382825
Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res. 2007;85(6):762-71. doi: 10.1016/j.exer.2007.08.010 pmid: 17915218
Wang X, Ohji M. Vascular endothelial growth factor and its inhibitor in age-related macular degeneration. Taiwan Journal of Ophthalmology. 2013;3(4):128-33. doi: 10.1016/j.tjo.2013.09.002
Cao S, Walker GB, Wang X, Cui JZ, Matsubara JA. Altered cytokine profiles of human retinal pigment epithelium: oxidant injury and replicative senescence. Mol Vis. 2013;19:718-28 pmid: 23559866
Coppé JP, Kauser K, Campisi J, Beauséjour CM. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem. 2006;281(40):29568-74. doi: 10.1074/jbc.M603307200 pmid: 16880208
Miku?a-Pietrasik J, Sosi?ska P, Naumowicz E, Maksin K, Piotrowska H, Wo?niak A, et al. Senescent peritoneal mesothelium induces a pro-angiogenic phenotype in ovarian cancer cells in vitro and in a mouse xenograft model in vivo. Clin Exp Metastasis. 2016;33(1):15-27. doi: 10.1007/s10585-015-9753-y pmid: 26433963
Kozlowski MR. Senescent retinal pigment epithelial cells are more sensitive to vascular endothelial growth factor: implications for "wet" age-related macular degeneration. J Ocul Pharmacol Ther. 2015;31(2):87-92. doi: 10.1089/jop.2014.0071 pmid: 25453983
Ren JL, Pan JS, Lu YP, Sun P, Han J. Inflammatory signaling and cellular senescence. Cell Signal. 2009;21(3):378-83. doi: 10.1016/j.cellsig.2008.10.011 pmid: 18992324
Nemoto K, Kondo Y, Himeno S, Suzuki Y, Hara S, Akimoto M, et al. Modulation of telomerase activity by zinc in human prostatic and renal cancer cells. Biochem Pharmacol. 2000;59(4):401-5. doi: 10.1016/s0006-2952(99)00334-2 pmid: 10644048
Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250-7. doi: 10.1001/jama.2009.2008 pmid: 20085953
Johra FT, Bepari AK, Bristy AT, Reza HM. A Mechanistic Review of ?-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants (Basel). 2020;9(11):1046. doi: 10.3390/antiox9111046 pmid: 33114699
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times