Refractive errors in infants with retinopathy of prematurity treated using laser or anti-vascular endothelial growth factor monotherapy
Medical hypothesis, discovery & innovation in optometry,
Vol. 4 No. 3 (2023),
3 October 2023
,
Page 112-120
https://doi.org/10.51329/mehdioptometry180
Abstract
Background: Infants treated for retinopathy of prematurity (ROP) could develop visually significant refractive errors. In this study, we report pre-treatment refractive errors in premature infants with treatment-requiring ROP treated using laser or anti-VEGF monotherapy and compare the components of post-treatment refractive error values between the two treatment groups at different follow-up timepoints.Methods: In this retrospective cohort study, we analyzed 360 eyes of 181 premature infants with treatment-requiring ROP who were referred to Farabi Eye Hospital, Tehran, Iran between March 2020 and April 2021. Of the 360 eyes, 195 received laser monotherapy (laser treatment group) and 165 received an intravitreal anti-VEGF injection (anti-VEGF therapy group). All included eyes underwent pre- and post-treatment cycloplegic refraction. Cycloplegia was induced for each infant by instilling a mixed eye drop containing 1% tropicamide, 2.5% phenylephrine, and 0.5% tetracaine (in equal volumes) in each eye three times at five-minute intervals. Cycloplegic refraction was performed 30 minutes after the third instillation.
Results: The mean (standard deviation [SD]) gestational age (GA) and birth weight (BW) of the infants were 29.0 (2.0) weeks and 1241.0 (403.0) g, respectively. The male-to-female ratio in the entire study cohort was 107 (59.1%) / 74 (40.9%), whereas the ratios in the anti-VEGF therapy group and laser treatment group were 47 (56.6%) / 36 (43.4%) and 60 (61.2%) / 38 (38.8%), respectively. The pre-treatment assessment revealed that 218 (60.6%) eyes were hyperopic, 112 (31.1%) were myopic, and 30 (8.3%) were emmetropic. In the anti-VEGF therapy group, 87 (52.7%) eyes were hyperopic, 63 (38.2%) were myopic, and 15 (9.1%) were emmetropic. In the laser treatment group, 131 (67.2%) eyes were hyperopic, 49 (25.1%) were myopic, and 15 (7.7%) were emmetropic. The mean (SD) spherical refractive error and spherical equivalent of refractive error (SEQ) at the 1-week, 1-month, and > 6-month post-treatment follow-up timepoints; the mean cylindrical refractive error at the 3-month post-treatment timepoint; and the mean SEQ at the time of ROP regression were significantly different between the treatment groups (all P < 0.05). The rate of anisometropia increased significantly from 3.4% at baseline to 9.2% at the 6-month post-treatment follow-up timepoint (P < 0.05).
Conclusions: In this study, the most common pre-treatment refractive status of all included eyes with treatment-requiring ROP and eyes in each treatment group was hyperopia, followed by myopia and emmetropia. At the more than 6-month post-treatment follow-up, cycloplegic refraction revealed that the laser-treated eyes were significantly more hyperopic than the anti-VEGF-treated eyes, a finding similar to the pre-treatment refraction results. Further studies of same cohort with a longer follow-up period and a control group are needed to determine the real-world effect of each treatment modality on the refractive statuses of children treated for ROP.
Keywords:
- infants
- neonate
- premature infant
- prematurity retinopathy
- refractive error
- laser therapies
- intravitreal injection
- VEGFs
- Avastin
References
1. Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013;74 Suppl 1(Suppl 1):35-49. doi: 10.1038/pr.2013.205 pmid: 24366462
2. Heidary F, Gharebaghi R. Outcomes of Retinopathy of Prematurity. Med Hypothesis Discov Innov Ophthalmol. 2016;5(4):112-114. pmid: 28293657
3. Wheatley CM, Dickinson JL, Mackey DA, Craig JE, Sale MM. Retinopathy of prematurity: recent advances in our understanding. Arch Dis Child Fetal Neonatal Ed. 2002;87(2):F78-82. doi: 10.1136/fn.87.2.f78 pmid: 12193510
4. Gergely K, Gerinec A. Retinopathy of prematurity--epidemics, incidence, prevalence, blindness. Bratisl Lek Listy. 2010;111(9):514-7. pmid: 21180268
5. Kemper AR, Wallace DK, Quinn GE. Systematic review of digital imaging screening strategies for retinopathy of prematurity. Pediatrics. 2008;122(4):825-30. doi: 10.1542/peds.2007-3667 pmid: 18829807
6. Chen J, Stahl A, Hellstrom A, Smith LE. Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr. 2011;23(2):173-8. doi: 10.1097/MOP.0b013e3283423f35 pmid: 21150442
7. Barry GP, Yu Y, Ying GS, Tomlinson LA, Lajoie J, Fisher M, et al; G-ROP Study Group. Retinal Detachment after Treatment of Retinopathy of Prematurity with Laser versus Intravitreal Anti-Vascular Endothelial Growth Factor. Ophthalmology. 2021;128(8):1188-1196. doi: 10.1016/j.ophtha.2020.12.028 pmid: 33387554
8. Kana H, Mayet I, Soma D, Dawood Alli H, Biddulph S. The efficacy of intravitreal antivascular endothelial growth factor as primary treatment of retinopathy of prematurity: Experience from a tertiary hospital. S Afr Med J. 2017;107(3):215-218. doi: 10.7196/SAMJ.2017.v107i3.11080 pmid: 28281426
9. Mueller B, Salchow DJ, Waffenschmidt E, Joussen AM, Schmalisch G, Czernik C, et al. Treatment of type I ROP with intravitreal bevacizumab or laser photocoagulation according to retinal zone. Br J Ophthalmol. 2017;101(3):365-370. doi: 10.1136/bjophthalmol-2016-308375 pmid: 27301450
10. Lepore D, Quinn GE, Molle F, Baldascino A, Orazi L, Sammartino M, et al. Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology. 2014;121(11):2212-9. doi: 10.1016/j.ophtha.2014.05.015 pmid: 25001158
11. Tsiropoulos GN, Seliniotaki AK, Haidich AB, Ziakas N, Mataftsi A. Comparison of adverse events between intravitreal anti-VEGF and laser photocoagulation for treatment-requiring retinopathy of prematurity: a systematic review. Int Ophthalmol. 2023;43(3):1027-1062. doi: 10.1007/s10792-022-02480-6 pmid: 36214992
12. Geloneck MM, Chuang AZ, Clark WL, Hunt MG, Norman AA, Packwood EA, et al; BEAT-ROP Cooperative Group. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol. 2014;132(11):1327-33. doi: 10.1001/jamaophthalmol.2014.2772 pmid: 25103848
13. Harder BC, Schlichtenbrede FC, von Baltz S, Jendritza W, Jendritza B, Jonas JB. Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol. 2013;155(6):1119-1124.e1. doi: 10.1016/j.ajo.2013.01.014 pmid: 23490192
14. Kaur S, Sukhija J, Katoch D, Sharma M, Samanta R, Dogra MR. Refractive and ocular biometric profile of children with a history of laser treatment for retinopathy of prematurity. Indian J Ophthalmol. 2017;65(9):835-840. doi: 10.4103/ijo.IJO_872_16 pmid: 28905827
15. Simmons M, Wang J, Leffler JN, Li S, Morale SE, de la Cruz A, et al. Longitudinal Development of Refractive Error in Children Treated With Intravitreal Bevacizumab or Laser for Retinopathy of Prematurity. Transl Vis Sci Technol. 2021;10(4):14. doi: 10.1167/tvst.10.4.14 pmid: 34003992
16. Kuo HK, Sun IT, Chung MY, Chen YH. Refractive Error in Patients with Retinopathy of Prematurity after Laser Photocoagulation or Bevacizumab Monotherapy. Ophthalmologica. 2015;234(4):211-7. doi: 10.1159/000439182 pmid: 26393895
17. Isaac M, Mireskandari K, Tehrani N. Treatment of type 1 retinopathy of prematurity with bevacizumab versus laser. J AAPOS. 2015;19(2):140-4. doi: 10.1016/j.jaapos.2015.01.009 pmid: 25892041
18. Harel-Gadassi A, Friedlander E, Yaari M, Bar-Oz B, Eventov-Friedman S, Mankuta D, et al. Developmental assessment of preterm infants: Chronological or corrected age? Res Dev Disabil. 2018;80:35-43. doi: 10.1016/j.ridd.2018.06.002 pmid: 29906778
19. Beck KD, Rahman EZ, Ells A, Mireskandari K, Berrocal AM, Harper CA 3rd. SAFER-ROP: Updated Protocol for Anti-VEGF Injections for Retinopathy of Prematurity. Ophthalmic Surg Lasers Imaging Retina. 2020;51(7):402-406. doi: 10.3928/23258160-20200702-05 pmid: 32706898
20. Roohipoor R, Karkhaneh R, Riazi-Esfahani M, Dastjani Farahani A, Khodabandeh A, Ebrahimi Adib N, et al. Comparison of Intravitreal Bevacizumab and Laser Photocoagulation in the Treatment of Retinopathy of Prematurity. Ophthalmol Retina. 2018;2(9):942-948. doi: 10.1016/j.oret.2018.01.017 pmid: 31047228
21. Lee YS, See LC, Chang SH, Wang NK, Hwang YS, Lai CC, et al. Macular Structures, Optical Components, and Visual Acuity in Preschool Children after Intravitreal Bevacizumab or Laser Treatment. Am J Ophthalmol. 2018;192:20-30. doi: 10.1016/j.ajo.2018.05.002 pmid: 29753851
22. Kabata? EU, Kurtul BE, Alt?ayl?k Özer P, Kabata? N. Comparison of Intravitreal Bevacizumab, Intravitreal Ranibizumab and Laser Photocoagulation for Treatment of Type 1 Retinopathy of Prematurity in Turkish Preterm Children. Curr Eye Res. 2017;42(7):1054-1058. doi: 10.1080/02713683.2016.1264607 pmid: 28128986
23. Gunay M, Sekeroglu MA, Bardak H, Celik G, Esenulku CM, Hekimoglu E, et al. Evaluation of Refractive Errors and Ocular Biometric Outcomes after Intravitreal Bevacizumab for Retinopathy of Prematurity. Strabismus. 2016;24(2):84-8. doi: 10.3109/09273972.2016.1159232 pmid: 27120579
24. Roohipoor R, Torabi H, Karkhaneh R, Riazi-Eafahani M. Comparison of intravitreal bevacizumab injection and laser photocoagulation for type 1 zone II retinopathy of prematurity. J Curr Ophthalmol. 2018;31(1):61-65. doi: 10.1016/j.joco.2018.10.008 pmid: 30899848
2. Heidary F, Gharebaghi R. Outcomes of Retinopathy of Prematurity. Med Hypothesis Discov Innov Ophthalmol. 2016;5(4):112-114. pmid: 28293657
3. Wheatley CM, Dickinson JL, Mackey DA, Craig JE, Sale MM. Retinopathy of prematurity: recent advances in our understanding. Arch Dis Child Fetal Neonatal Ed. 2002;87(2):F78-82. doi: 10.1136/fn.87.2.f78 pmid: 12193510
4. Gergely K, Gerinec A. Retinopathy of prematurity--epidemics, incidence, prevalence, blindness. Bratisl Lek Listy. 2010;111(9):514-7. pmid: 21180268
5. Kemper AR, Wallace DK, Quinn GE. Systematic review of digital imaging screening strategies for retinopathy of prematurity. Pediatrics. 2008;122(4):825-30. doi: 10.1542/peds.2007-3667 pmid: 18829807
6. Chen J, Stahl A, Hellstrom A, Smith LE. Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr. 2011;23(2):173-8. doi: 10.1097/MOP.0b013e3283423f35 pmid: 21150442
7. Barry GP, Yu Y, Ying GS, Tomlinson LA, Lajoie J, Fisher M, et al; G-ROP Study Group. Retinal Detachment after Treatment of Retinopathy of Prematurity with Laser versus Intravitreal Anti-Vascular Endothelial Growth Factor. Ophthalmology. 2021;128(8):1188-1196. doi: 10.1016/j.ophtha.2020.12.028 pmid: 33387554
8. Kana H, Mayet I, Soma D, Dawood Alli H, Biddulph S. The efficacy of intravitreal antivascular endothelial growth factor as primary treatment of retinopathy of prematurity: Experience from a tertiary hospital. S Afr Med J. 2017;107(3):215-218. doi: 10.7196/SAMJ.2017.v107i3.11080 pmid: 28281426
9. Mueller B, Salchow DJ, Waffenschmidt E, Joussen AM, Schmalisch G, Czernik C, et al. Treatment of type I ROP with intravitreal bevacizumab or laser photocoagulation according to retinal zone. Br J Ophthalmol. 2017;101(3):365-370. doi: 10.1136/bjophthalmol-2016-308375 pmid: 27301450
10. Lepore D, Quinn GE, Molle F, Baldascino A, Orazi L, Sammartino M, et al. Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology. 2014;121(11):2212-9. doi: 10.1016/j.ophtha.2014.05.015 pmid: 25001158
11. Tsiropoulos GN, Seliniotaki AK, Haidich AB, Ziakas N, Mataftsi A. Comparison of adverse events between intravitreal anti-VEGF and laser photocoagulation for treatment-requiring retinopathy of prematurity: a systematic review. Int Ophthalmol. 2023;43(3):1027-1062. doi: 10.1007/s10792-022-02480-6 pmid: 36214992
12. Geloneck MM, Chuang AZ, Clark WL, Hunt MG, Norman AA, Packwood EA, et al; BEAT-ROP Cooperative Group. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol. 2014;132(11):1327-33. doi: 10.1001/jamaophthalmol.2014.2772 pmid: 25103848
13. Harder BC, Schlichtenbrede FC, von Baltz S, Jendritza W, Jendritza B, Jonas JB. Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol. 2013;155(6):1119-1124.e1. doi: 10.1016/j.ajo.2013.01.014 pmid: 23490192
14. Kaur S, Sukhija J, Katoch D, Sharma M, Samanta R, Dogra MR. Refractive and ocular biometric profile of children with a history of laser treatment for retinopathy of prematurity. Indian J Ophthalmol. 2017;65(9):835-840. doi: 10.4103/ijo.IJO_872_16 pmid: 28905827
15. Simmons M, Wang J, Leffler JN, Li S, Morale SE, de la Cruz A, et al. Longitudinal Development of Refractive Error in Children Treated With Intravitreal Bevacizumab or Laser for Retinopathy of Prematurity. Transl Vis Sci Technol. 2021;10(4):14. doi: 10.1167/tvst.10.4.14 pmid: 34003992
16. Kuo HK, Sun IT, Chung MY, Chen YH. Refractive Error in Patients with Retinopathy of Prematurity after Laser Photocoagulation or Bevacizumab Monotherapy. Ophthalmologica. 2015;234(4):211-7. doi: 10.1159/000439182 pmid: 26393895
17. Isaac M, Mireskandari K, Tehrani N. Treatment of type 1 retinopathy of prematurity with bevacizumab versus laser. J AAPOS. 2015;19(2):140-4. doi: 10.1016/j.jaapos.2015.01.009 pmid: 25892041
18. Harel-Gadassi A, Friedlander E, Yaari M, Bar-Oz B, Eventov-Friedman S, Mankuta D, et al. Developmental assessment of preterm infants: Chronological or corrected age? Res Dev Disabil. 2018;80:35-43. doi: 10.1016/j.ridd.2018.06.002 pmid: 29906778
19. Beck KD, Rahman EZ, Ells A, Mireskandari K, Berrocal AM, Harper CA 3rd. SAFER-ROP: Updated Protocol for Anti-VEGF Injections for Retinopathy of Prematurity. Ophthalmic Surg Lasers Imaging Retina. 2020;51(7):402-406. doi: 10.3928/23258160-20200702-05 pmid: 32706898
20. Roohipoor R, Karkhaneh R, Riazi-Esfahani M, Dastjani Farahani A, Khodabandeh A, Ebrahimi Adib N, et al. Comparison of Intravitreal Bevacizumab and Laser Photocoagulation in the Treatment of Retinopathy of Prematurity. Ophthalmol Retina. 2018;2(9):942-948. doi: 10.1016/j.oret.2018.01.017 pmid: 31047228
21. Lee YS, See LC, Chang SH, Wang NK, Hwang YS, Lai CC, et al. Macular Structures, Optical Components, and Visual Acuity in Preschool Children after Intravitreal Bevacizumab or Laser Treatment. Am J Ophthalmol. 2018;192:20-30. doi: 10.1016/j.ajo.2018.05.002 pmid: 29753851
22. Kabata? EU, Kurtul BE, Alt?ayl?k Özer P, Kabata? N. Comparison of Intravitreal Bevacizumab, Intravitreal Ranibizumab and Laser Photocoagulation for Treatment of Type 1 Retinopathy of Prematurity in Turkish Preterm Children. Curr Eye Res. 2017;42(7):1054-1058. doi: 10.1080/02713683.2016.1264607 pmid: 28128986
23. Gunay M, Sekeroglu MA, Bardak H, Celik G, Esenulku CM, Hekimoglu E, et al. Evaluation of Refractive Errors and Ocular Biometric Outcomes after Intravitreal Bevacizumab for Retinopathy of Prematurity. Strabismus. 2016;24(2):84-8. doi: 10.3109/09273972.2016.1159232 pmid: 27120579
24. Roohipoor R, Torabi H, Karkhaneh R, Riazi-Eafahani M. Comparison of intravitreal bevacizumab injection and laser photocoagulation for type 1 zone II retinopathy of prematurity. J Curr Ophthalmol. 2018;31(1):61-65. doi: 10.1016/j.joco.2018.10.008 pmid: 30899848
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times