Contralateral eye comparison of the efficacy and safety of two artificial tear formulations for corneal subbasal nerve fiber regeneration after photorefractive keratectomy
Medical hypothesis, discovery & innovation in optometry,
Vol. 4 No. 4 (2023),
25 December 2023
,
Page 157-165
https://doi.org/10.51329/mehdioptometry186
Abstract
Background: Currently, artificial tears (ATs) are the first-line agents for managing dry eye disease (DED). This study compared the efficacy and safety of two different AT formulations, Systane® Hydration (SH) and Systane® Ultra (SU), on symptoms of DED and regeneration of the subbasal corneal nerve fiber length (CNFL) in photorefractive keratectomy (PRK)-treated eyes.Methods: This prospective contralateral comparative study recruited myopic eyes scheduled for PRK, and either SH or SU were administered for up to 3 months postoperatively. All participants underwent a standard comprehensive preoperative ophthalmological examination, in vivo confocal microscopy to evaluate the subbasal CNFL, and completed Ocular Surface Disease Index (OSDI) questionnaire for assessing dry eye symptoms. Image analysis software was used to calculate the subbasal CNFL (micrometer/mm2). Assessments were repeated at the 1- and 3-month follow-up visits. Pre- and postoperative subbasal CNFL and OSDI scores were compared to determine inter- and intra-group differences.
Results: Fifty eyes of 25 participants were included in this study. The mean (standard deviation) age of the participants was 22.7 (3.8) years. The OSDI scores for both groups increased significantly at 1 month (both P<0.05), followed by a decrease at 3 months to values comparable to the preoperative scores (both P>0.05). Although OSDI scores were comparable at baseline and at the 1-month postoperative visit (both P>0.05), the SU-treated eyes had a significantly better OSDI score at the 3-month visit (P<0.05), despite being clinically insignificant. Preoperative subbasal CNFL differed significantly between the groups (P=0.001), yet the mean values at both postoperative visits were comparable (both P>0.05). In both groups, subbasal CNFL was significantly reduced at 1 month, followed by a significant increase at the 3-month postoperative visit compared to baseline (all P<0.05). No treatment-related complications were observed at the end of the study period.
Conclusions: No significant difference was found between the preoperative and 3-month postoperative OSDI scores in the SH- or SU-treated eyes. Subbasal CNFL regeneration indicated a positive effect of both ATs, with a longer mean CNFL noted in the SH-treated eyes at the final visit. This suggests that SH may be a better option for improving corneal reinnervation after PRK. These observations must be verified in further trials with longer follow-up periods and larger sample sizes.
Keywords:
- artificial tears
- photorefractive keratectomies
- dry eye syndrome
- corneas
- neural tissue regenerations
- questionnaire
References
1. Fogla R, Luthra G, Chhabra A, Gupta K, Dalal R, Khamar P. Preferred practice patterns for photorefractive keratectomy surgery. Indian J Ophthalmol. 2020;68(12):2847-2855. doi: 10.4103/ijo.IJO_2178_20 pmid: 33229660
2. Bandeira F, Yusoff NZ, Yam GH, Mehta JS. Corneal re-innervation following refractive surgery treatments. Neural Regen Res. 2019;14(4):557-565. doi: 10.4103/1673-5374.247421 pmid: 30632489
3. Alio JL, Soria FA, Abbouda A, Peña-García P. Fifteen years follow-up of photorefractive keratectomy up to 10 D of myopia: outcomes and analysis of the refractive regression. Br J Ophthalmol. 2016 May;100(5):626-32. doi: 10.1136/bjophthalmol-2014-306459 pmid: 26359339
4. Rosman M, Alió JL, Ortiz D, Perez-Santonja JJ. Comparison of LASIK and photorefractive keratectomy for myopia from -10.00 to -18.00 diopters 10 years after surgery. J Refract Surg. 2010;26(3):168-76. doi: 10.3928/1081597X-20100224-02 pmid: 20229948
5. Murakami Y, Manche EE. Prospective, randomized comparison of self-reported postoperative dry eye and visual fluctuation in LASIK and photorefractive keratectomy. Ophthalmology. 2012;119(11):2220-4. doi: 10.1016/j.ophtha.2012.06.013 pmid: 22892151
6. Ozcura F, Aydin S, Helvaci MR. Ocular surface disease index for the diagnosis of dry eye syndrome. Ocul Immunol Inflamm. 2007;15(5):389-93. doi: 10.1080/09273940701486803 pmid: 17972223
7. Lee HK, Lee KS, Kim HC, Lee SH, Kim EK. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis. Am J Ophthalmol. 2005;139(6):965-71. doi: 10.1016/j.ajo.2004.12.051 pmid: 15953424
8. Erie JC, McLaren JW, Hodge DO, Bourne WM. Recovery of corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol. 2005;140(6):1059-1064. doi: 10.1016/j.ajo.2005.07.027 pmid: 16376651
9. Labetoulle M, Baudouin C, Calonge M, Merayo-Lloves J, Boboridis KG, Akova YA, et al. Role of corneal nerves in ocular surface homeostasis and disease. Acta Ophthalmol. 2019;97(2):137-145. doi: 10.1111/aos.13844 pmid: 30225941
10. Garcia-Gonzalez M, Cañadas P, Gros-Otero J, Rodriguez-Perez I, Cañones-Zafra R, Kozobolis V, et al. Long-term corneal subbasal nerve plexus regeneration after laser in situ keratomileusis. J Cataract Refract Surg. 2019;45(7):966-971. doi: 10.1016/j.jcrs.2019.02.019 pmid: 31029474
11. Ribeiro MVMR, Barbosa FT, Ribeiro LEF, Sousa-Rodrigues CF, Ribeiro EAN. Effectiveness of using preservative-free artificial tears versus preserved lubricants for the treatment of dry eyes: a systematic review. Arq Bras Oftalmol. 2019;82(5):436-445. doi: 10.5935/0004-2749.20190097 pmid: 31508669
12. Che Arif FA, Hilmi MR, Kamal KM, Ithnin MH. Comparison of Immediate Effects on Usage of Dual Polymer Artificial Tears on Changes in Tear Film Characteristics. Malaysian Journal of Medicine & Health Sciences. 2021;18(3):252-258. doi: 10.31436/imjm.v18i2.613
13. D'Souza S, Shetty R, Nair AP, Agrawal R, Dickman MM, Khamar P, et al. Corneal Confocal Microscopy Features and Tear Molecular Profile in Study Participants with Discordance between Ocular Surface Disease Clinical Signs and Discomfort. J Clin Med. 2022;11(9):2407. doi: 10.3390/jcm11092407 pmid: 35566533
14. Sarkar J, Chaudhary S, Namavari A, Ozturk O, Chang JH, Yco L, et al. Corneal neurotoxicity due to topical benzalkonium chloride. Invest Ophthalmol Vis Sci. 2012;53(4):1792-802. doi: 10.1167/iovs.11-8775 pmid: 22410563
15. Chhadva P, Goldhardt R, Galor A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology. 2017;124(11S):S20-S26. doi: 10.1016/j.ophtha.2017.05.031 pmid: 29055358
16. Han KE, Yoon SC, Ahn JM, Nam SM, Stulting RD, Kim EK, et al. Evaluation of dry eye and meibomian gland dysfunction after cataract surgery. Am J Ophthalmol. 2014;157(6):1144-1150.e1. doi: 10.1016/j.ajo.2014.02.036 pmid: 24561172
17. Minami K, Miyata K, Otani A, Tokunaga T, Tokuda S, Amano S. Detection of increase in corneal irregularity due to pterygium using Fourier series harmonic analyses with multiple diameters. Jpn J Ophthalmol. 2018;62(3):342-348. doi: 10.1007/s10384-018-0583-8 pmid: 29532273
18. Mohd Radzi H, Khairidzan MK, Mohd Zulfaezal CA, Azrin EA. Corneo-pterygium total area measurements utilising image analysis method. J Optom. 2019;12(4):272-277. doi: 10.1016/j.optom.2019.04.001 pmid: 31097348
19. Cook WH, McKelvie J, Wallace HB, Misra SL. Comparison of higher order wavefront aberrations with four aberrometers. Indian J Ophthalmol. 2019;67(7):1030-1035. doi: 10.4103/ijo.IJO_1464_18 pmid: 31238402
20. Moshirfar M, Motlagh MN, Murri MS, Momeni-Moghaddam H, Ronquillo YC, Hoopes PC. Galilei Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part II. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):204-218 pmid: 31598521
21. Xu Y, Deng J, Zhang B, Xu X, Cheng T, Wang J, et al. Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents. Br J Ophthalmol. 2023;107(6):862-868. doi: 10.1136/bjophthalmol-2021-319769 pmid: 35027355
22. Mohd-Ali B, Chen LY, Shahimin MM, Arif N, Abdul Hamid H, Wan Abdul Halim WH, et al. Ocular dimensions by three-dimensional magnetic resonance imaging in emmetropic versus myopic school children. Med Hypothesis Discov Innov Ophthalmol. 2022;11(2):64-70. doi: 10.51329/mehdiophthal1447 pmid: 37641786
23. Urbaniak GC, Plous S (2013).'Research Randomizer (Version 4.0) [Computer software]'. Available at: http://www.randomizer.org/ (Accessed: January 02, 2021)
24. Belalcázar-Rey S, Sánchez Huerta V, Ochoa-Tabares JC, Altamirano Vallejo S, Soto-Gómez A, Suárez-Velasco R, et al. Efficacy and Safety of Sodium Hyaluronate/chondroitin Sulfate Preservative-free Ophthalmic Solution in the Treatment of Dry Eye: A Clinical Trial. Curr Eye Res. 2021;46(7):919-929. doi: 10.1080/02713683.2020.1849733 pmid: 33289602
25. Labetoulle M, Schmickler S, Galarreta D, Böhringer D, Ogundele A, Guillon M, et al. Efficacy and safety of dual-polymer hydroxypropyl guar- and hyaluronic acid-containing lubricant eyedrops for the management of dry-eye disease: a randomized double-masked clinical study. Clin Ophthalmol. 2018;12:2499-2508. doi: 10.2147/OPTH.S177176 pmid: 30584269
26. Ali AN, Mustafa MM, Rahim FH, Fauzi NA, Kamal KM, Hilmi MR. Correlation of Visual Recovery Time After Laser Refractive Surgery With Preoperative Keratometry and Astigmatism Among Myopic Astigmatism Patients. International Journal of Allied Health Sciences. 2020;4(1):1028-41. Link
27. Petroll WM, Robertson DM. In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module. Ocul Surf. 2015;13(3):187-203. doi: 10.1016/j.jtos.2015.05.002 pmid: 25998608
28. Roszkowska AM, Wyl?ga?a A, Gargano R, Spinella R, Inferrera L, Orzechowska-Wyl?ga?a B, et al. Impact of corneal parameters, refractive error and age on density and morphology of the subbasal nerve plexus fibers in healthy adults. Sci Rep. 2021;11(1):6076. doi: 10.1038/s41598-021-85597-5 pmid: 33727601
29. Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc. 2003;101:293-333. pmid: 14971584
30. Rejab NS, Hilmi MR, Kamal KM. Validation of IVCM In Measuring Sub-Basal Nerve Plexus and Keratocyte Cell Density in Corneal Wound Healing. J Ophthalmic Res Vis Care. 2022;2(1). doi: 10.54289/JORVC2200105
31. Mohebbi M, Rafat-Nejad A, Mohammadi SF, Asna-Ashari K, Kasiri M, Heidari-Keshel S, et al. Post-photorefractive Keratectomy Pain and Corneal Sub-basal Nerve Density. J Ophthalmic Vis Res. 2017;12(2):151-155. doi: 10.4103/jovr.jovr_100_16 pmid: 28540005
32. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol. 2000;118(5):615-21. doi: 10.1001/archopht.118.5.615 pmid: 10815152
33. Barber L, Khodai O, Croley T, Lievens C, Montaquila S, Ziemanski J, et al. Dry eye symptoms and impact on vision-related function across International Task Force guidelines severity levels in the United States. BMC Ophthalmol. 2018;18(1):260. doi: 10.1186/s12886-018-0919-7 pmid: 30268117
34. Pult H, Wolffsohn JS. The development and evaluation of the new Ocular Surface Disease Index-6. Ocul Surf. 2019;17(4):817-821. doi: 10.1016/j.jtos.2019.08.008 pmid: 31442595
35. Downie LE, Naranjo Golborne C, Chen M, Ho N, Hoac C, Liyanapathirana D, et al. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice. Exp Eye Res. 2018;171:92-100. doi: 10.1016/j.exer.2018.03.012 pmid: 29550279
36. Parissi M, Karanis G, Randjelovic S, Germundsson J, Poletti E, Ruggeri A, et al. Standardized baseline human corneal subbasal nerve density for clinical investigations with laser-scanning in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2013;54(10):7091-102. doi: 10.1167/iovs.13-12999 pmid: 24084094
37. Midorikawa-Inomata A, Inomata T, Nojiri S, Nakamura M, Iwagami M, Fujimoto K, et al. Reliability and validity of the Japanese version of the Ocular Surface Disease Index for dry eye disease. BMJ Open. 2019;9(11):e033940. doi: 10.1136/bmjopen-2019-033940 pmid: 31772113
38. Tong L, Zhao Y, Lee R. Corneal refractive surgery-related dry eye: risk factors and management. Expert Review of Ophthalmology. 2013;8(6):561-75. doi: 10.1586/17469899.2013.851602
39. Dohlman TH, Lai EC, Ciralsky JB. Dry Eye Disease After Refractive Surgery. Int Ophthalmol Clin. 2016;56(2):101-10. doi: 10.1097/IIO.0000000000000104 pmid: 26938341
40. Roszkowska AM, Rusciano D, Inferrera L, Severo AA, Aragona P. Oral Aminoacids Supplementation Improves Corneal Reinnervation After Photorefractive Keratectomy: A Confocal-Based Investigation. Front Pharmacol. 2021;12:680734. doi: 10.3389/fphar.2021.680734 pmid: 34385916
41. Hindman HB, DeMagistris M, Callan C, McDaniel T, Bubel T, Huxlin KR. Impact of topical anti-fibrotics on corneal nerve regeneration in vivo. Exp Eye Res. 2019;181:49-60. doi: 10.1016/j.exer.2019.01.017 pmid: 30660507
42. Xeroudaki M, Peebo B, Germundsson J, Fagerholm P, Lagali N. RGTA in corneal wound healing after transepithelial laser ablation in a rabbit model: a randomized, blinded, placebo-controlled study. Acta Ophthalmol. 2016;94(7):685-691. doi: 10.1111/aos.13116 pmid: 27227481
43. Pal-Ghosh S, Pajoohesh-Ganji A, Tadvalkar G, Kyne BM, Guo X, Zieske JD, et al. Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp Eye Res. 2016;146:361-369. doi: 10.1016/j.exer.2015.08.023 pmid: 26332224
44. Esquenazi S, Bazan HE, Bui V, He J, Kim DB, Bazan NG. Topical combination of NGF and DHA increases rabbit corneal nerve regeneration after photorefractive keratectomy. Invest Ophthalmol Vis Sci. 2005;46(9):3121-7. doi: 10.1167/iovs.05-0241 pmid: 16123410
45. Quinto GG, Camacho W, Behrens A. Postrefractive surgery dry eye. Curr Opin Ophthalmol. 2008;19(4):335-41. doi: 10.1097/ICU.0b013e3283009ef8 pmid: 18545018
46. Salib GM, McDonald MB, Smolek M. Safety and efficacy of cyclosporine 0.05% drops versus unpreserved artificial tears in dry-eye patients having laser in situ keratomileusis. J Cataract Refract Surg. 2006;32(5):772-8. doi: 10.1016/j.jcrs.2005.10.034 pmid: 16765793
47. Park Y, Song JS, Choi CY, Yoon KC, Lee HK, Kim HS. A Randomized Multicenter Study Comparing 0.1%, 0.15%, and 0.3% Sodium Hyaluronate with 0.05% Cyclosporine in the Treatment of Dry Eye. J Ocul Pharmacol Ther. 2017;33(2):66-72. doi: 10.1089/jop.2016.0086 pmid: 27929721
48. Johnson ME, Murphy PJ, Boulton M. Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefes Arch Clin Exp Ophthalmol. 2006;244(1):109-12. doi: 10.1007/s00417-005-0028-1 pmid: 15983814
49. Salzillo R, Schiraldi C, Corsuto L, D'Agostino A, Filosa R, De Rosa M, et al. Optimization of hyaluronan-based eye drop formulations. Carbohydr Polym. 2016;153:275-283. doi: 10.1016/j.carbpol.2016.07.106. Erratum in: Carbohydr Polym. 2018;181:1235-1236 pmid: 27561497
50. Moilanen JA, Vesaluoma MH, Müller LJ, Tervo TM. Long-term corneal morphology after PRK by in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2003;44(3):1064-9. doi: 10.1167/iovs.02-0247 pmid: 12601030
51. Gambato C, Miotto S, Cortese M, Ghirlando A, Lazzarini D, Midena E. Mitomycin C-assisted photorefractive keratectomy in high myopia: a long-term safety study. Cornea. 2011;30(6):641-5. doi: 10.1097/ICO.0b013e31820123c8 pmid: 21242784
52. Tosi GM, Martone G, Bacci T, Tarantello A, Baiocchi S, Marigliani D, et al. Long-term evaluation of corneal sub-basal nerve recovery after photorefractive keratectomy and influence of pars plana vitrectomy. J Cell Physiol. 2019;234(5):7459-7466. doi: 10.1002/jcp.27504 pmid: 30417371
2. Bandeira F, Yusoff NZ, Yam GH, Mehta JS. Corneal re-innervation following refractive surgery treatments. Neural Regen Res. 2019;14(4):557-565. doi: 10.4103/1673-5374.247421 pmid: 30632489
3. Alio JL, Soria FA, Abbouda A, Peña-García P. Fifteen years follow-up of photorefractive keratectomy up to 10 D of myopia: outcomes and analysis of the refractive regression. Br J Ophthalmol. 2016 May;100(5):626-32. doi: 10.1136/bjophthalmol-2014-306459 pmid: 26359339
4. Rosman M, Alió JL, Ortiz D, Perez-Santonja JJ. Comparison of LASIK and photorefractive keratectomy for myopia from -10.00 to -18.00 diopters 10 years after surgery. J Refract Surg. 2010;26(3):168-76. doi: 10.3928/1081597X-20100224-02 pmid: 20229948
5. Murakami Y, Manche EE. Prospective, randomized comparison of self-reported postoperative dry eye and visual fluctuation in LASIK and photorefractive keratectomy. Ophthalmology. 2012;119(11):2220-4. doi: 10.1016/j.ophtha.2012.06.013 pmid: 22892151
6. Ozcura F, Aydin S, Helvaci MR. Ocular surface disease index for the diagnosis of dry eye syndrome. Ocul Immunol Inflamm. 2007;15(5):389-93. doi: 10.1080/09273940701486803 pmid: 17972223
7. Lee HK, Lee KS, Kim HC, Lee SH, Kim EK. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis. Am J Ophthalmol. 2005;139(6):965-71. doi: 10.1016/j.ajo.2004.12.051 pmid: 15953424
8. Erie JC, McLaren JW, Hodge DO, Bourne WM. Recovery of corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol. 2005;140(6):1059-1064. doi: 10.1016/j.ajo.2005.07.027 pmid: 16376651
9. Labetoulle M, Baudouin C, Calonge M, Merayo-Lloves J, Boboridis KG, Akova YA, et al. Role of corneal nerves in ocular surface homeostasis and disease. Acta Ophthalmol. 2019;97(2):137-145. doi: 10.1111/aos.13844 pmid: 30225941
10. Garcia-Gonzalez M, Cañadas P, Gros-Otero J, Rodriguez-Perez I, Cañones-Zafra R, Kozobolis V, et al. Long-term corneal subbasal nerve plexus regeneration after laser in situ keratomileusis. J Cataract Refract Surg. 2019;45(7):966-971. doi: 10.1016/j.jcrs.2019.02.019 pmid: 31029474
11. Ribeiro MVMR, Barbosa FT, Ribeiro LEF, Sousa-Rodrigues CF, Ribeiro EAN. Effectiveness of using preservative-free artificial tears versus preserved lubricants for the treatment of dry eyes: a systematic review. Arq Bras Oftalmol. 2019;82(5):436-445. doi: 10.5935/0004-2749.20190097 pmid: 31508669
12. Che Arif FA, Hilmi MR, Kamal KM, Ithnin MH. Comparison of Immediate Effects on Usage of Dual Polymer Artificial Tears on Changes in Tear Film Characteristics. Malaysian Journal of Medicine & Health Sciences. 2021;18(3):252-258. doi: 10.31436/imjm.v18i2.613
13. D'Souza S, Shetty R, Nair AP, Agrawal R, Dickman MM, Khamar P, et al. Corneal Confocal Microscopy Features and Tear Molecular Profile in Study Participants with Discordance between Ocular Surface Disease Clinical Signs and Discomfort. J Clin Med. 2022;11(9):2407. doi: 10.3390/jcm11092407 pmid: 35566533
14. Sarkar J, Chaudhary S, Namavari A, Ozturk O, Chang JH, Yco L, et al. Corneal neurotoxicity due to topical benzalkonium chloride. Invest Ophthalmol Vis Sci. 2012;53(4):1792-802. doi: 10.1167/iovs.11-8775 pmid: 22410563
15. Chhadva P, Goldhardt R, Galor A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology. 2017;124(11S):S20-S26. doi: 10.1016/j.ophtha.2017.05.031 pmid: 29055358
16. Han KE, Yoon SC, Ahn JM, Nam SM, Stulting RD, Kim EK, et al. Evaluation of dry eye and meibomian gland dysfunction after cataract surgery. Am J Ophthalmol. 2014;157(6):1144-1150.e1. doi: 10.1016/j.ajo.2014.02.036 pmid: 24561172
17. Minami K, Miyata K, Otani A, Tokunaga T, Tokuda S, Amano S. Detection of increase in corneal irregularity due to pterygium using Fourier series harmonic analyses with multiple diameters. Jpn J Ophthalmol. 2018;62(3):342-348. doi: 10.1007/s10384-018-0583-8 pmid: 29532273
18. Mohd Radzi H, Khairidzan MK, Mohd Zulfaezal CA, Azrin EA. Corneo-pterygium total area measurements utilising image analysis method. J Optom. 2019;12(4):272-277. doi: 10.1016/j.optom.2019.04.001 pmid: 31097348
19. Cook WH, McKelvie J, Wallace HB, Misra SL. Comparison of higher order wavefront aberrations with four aberrometers. Indian J Ophthalmol. 2019;67(7):1030-1035. doi: 10.4103/ijo.IJO_1464_18 pmid: 31238402
20. Moshirfar M, Motlagh MN, Murri MS, Momeni-Moghaddam H, Ronquillo YC, Hoopes PC. Galilei Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part II. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):204-218 pmid: 31598521
21. Xu Y, Deng J, Zhang B, Xu X, Cheng T, Wang J, et al. Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents. Br J Ophthalmol. 2023;107(6):862-868. doi: 10.1136/bjophthalmol-2021-319769 pmid: 35027355
22. Mohd-Ali B, Chen LY, Shahimin MM, Arif N, Abdul Hamid H, Wan Abdul Halim WH, et al. Ocular dimensions by three-dimensional magnetic resonance imaging in emmetropic versus myopic school children. Med Hypothesis Discov Innov Ophthalmol. 2022;11(2):64-70. doi: 10.51329/mehdiophthal1447 pmid: 37641786
23. Urbaniak GC, Plous S (2013).'Research Randomizer (Version 4.0) [Computer software]'. Available at: http://www.randomizer.org/ (Accessed: January 02, 2021)
24. Belalcázar-Rey S, Sánchez Huerta V, Ochoa-Tabares JC, Altamirano Vallejo S, Soto-Gómez A, Suárez-Velasco R, et al. Efficacy and Safety of Sodium Hyaluronate/chondroitin Sulfate Preservative-free Ophthalmic Solution in the Treatment of Dry Eye: A Clinical Trial. Curr Eye Res. 2021;46(7):919-929. doi: 10.1080/02713683.2020.1849733 pmid: 33289602
25. Labetoulle M, Schmickler S, Galarreta D, Böhringer D, Ogundele A, Guillon M, et al. Efficacy and safety of dual-polymer hydroxypropyl guar- and hyaluronic acid-containing lubricant eyedrops for the management of dry-eye disease: a randomized double-masked clinical study. Clin Ophthalmol. 2018;12:2499-2508. doi: 10.2147/OPTH.S177176 pmid: 30584269
26. Ali AN, Mustafa MM, Rahim FH, Fauzi NA, Kamal KM, Hilmi MR. Correlation of Visual Recovery Time After Laser Refractive Surgery With Preoperative Keratometry and Astigmatism Among Myopic Astigmatism Patients. International Journal of Allied Health Sciences. 2020;4(1):1028-41. Link
27. Petroll WM, Robertson DM. In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module. Ocul Surf. 2015;13(3):187-203. doi: 10.1016/j.jtos.2015.05.002 pmid: 25998608
28. Roszkowska AM, Wyl?ga?a A, Gargano R, Spinella R, Inferrera L, Orzechowska-Wyl?ga?a B, et al. Impact of corneal parameters, refractive error and age on density and morphology of the subbasal nerve plexus fibers in healthy adults. Sci Rep. 2021;11(1):6076. doi: 10.1038/s41598-021-85597-5 pmid: 33727601
29. Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc. 2003;101:293-333. pmid: 14971584
30. Rejab NS, Hilmi MR, Kamal KM. Validation of IVCM In Measuring Sub-Basal Nerve Plexus and Keratocyte Cell Density in Corneal Wound Healing. J Ophthalmic Res Vis Care. 2022;2(1). doi: 10.54289/JORVC2200105
31. Mohebbi M, Rafat-Nejad A, Mohammadi SF, Asna-Ashari K, Kasiri M, Heidari-Keshel S, et al. Post-photorefractive Keratectomy Pain and Corneal Sub-basal Nerve Density. J Ophthalmic Vis Res. 2017;12(2):151-155. doi: 10.4103/jovr.jovr_100_16 pmid: 28540005
32. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol. 2000;118(5):615-21. doi: 10.1001/archopht.118.5.615 pmid: 10815152
33. Barber L, Khodai O, Croley T, Lievens C, Montaquila S, Ziemanski J, et al. Dry eye symptoms and impact on vision-related function across International Task Force guidelines severity levels in the United States. BMC Ophthalmol. 2018;18(1):260. doi: 10.1186/s12886-018-0919-7 pmid: 30268117
34. Pult H, Wolffsohn JS. The development and evaluation of the new Ocular Surface Disease Index-6. Ocul Surf. 2019;17(4):817-821. doi: 10.1016/j.jtos.2019.08.008 pmid: 31442595
35. Downie LE, Naranjo Golborne C, Chen M, Ho N, Hoac C, Liyanapathirana D, et al. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice. Exp Eye Res. 2018;171:92-100. doi: 10.1016/j.exer.2018.03.012 pmid: 29550279
36. Parissi M, Karanis G, Randjelovic S, Germundsson J, Poletti E, Ruggeri A, et al. Standardized baseline human corneal subbasal nerve density for clinical investigations with laser-scanning in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2013;54(10):7091-102. doi: 10.1167/iovs.13-12999 pmid: 24084094
37. Midorikawa-Inomata A, Inomata T, Nojiri S, Nakamura M, Iwagami M, Fujimoto K, et al. Reliability and validity of the Japanese version of the Ocular Surface Disease Index for dry eye disease. BMJ Open. 2019;9(11):e033940. doi: 10.1136/bmjopen-2019-033940 pmid: 31772113
38. Tong L, Zhao Y, Lee R. Corneal refractive surgery-related dry eye: risk factors and management. Expert Review of Ophthalmology. 2013;8(6):561-75. doi: 10.1586/17469899.2013.851602
39. Dohlman TH, Lai EC, Ciralsky JB. Dry Eye Disease After Refractive Surgery. Int Ophthalmol Clin. 2016;56(2):101-10. doi: 10.1097/IIO.0000000000000104 pmid: 26938341
40. Roszkowska AM, Rusciano D, Inferrera L, Severo AA, Aragona P. Oral Aminoacids Supplementation Improves Corneal Reinnervation After Photorefractive Keratectomy: A Confocal-Based Investigation. Front Pharmacol. 2021;12:680734. doi: 10.3389/fphar.2021.680734 pmid: 34385916
41. Hindman HB, DeMagistris M, Callan C, McDaniel T, Bubel T, Huxlin KR. Impact of topical anti-fibrotics on corneal nerve regeneration in vivo. Exp Eye Res. 2019;181:49-60. doi: 10.1016/j.exer.2019.01.017 pmid: 30660507
42. Xeroudaki M, Peebo B, Germundsson J, Fagerholm P, Lagali N. RGTA in corneal wound healing after transepithelial laser ablation in a rabbit model: a randomized, blinded, placebo-controlled study. Acta Ophthalmol. 2016;94(7):685-691. doi: 10.1111/aos.13116 pmid: 27227481
43. Pal-Ghosh S, Pajoohesh-Ganji A, Tadvalkar G, Kyne BM, Guo X, Zieske JD, et al. Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp Eye Res. 2016;146:361-369. doi: 10.1016/j.exer.2015.08.023 pmid: 26332224
44. Esquenazi S, Bazan HE, Bui V, He J, Kim DB, Bazan NG. Topical combination of NGF and DHA increases rabbit corneal nerve regeneration after photorefractive keratectomy. Invest Ophthalmol Vis Sci. 2005;46(9):3121-7. doi: 10.1167/iovs.05-0241 pmid: 16123410
45. Quinto GG, Camacho W, Behrens A. Postrefractive surgery dry eye. Curr Opin Ophthalmol. 2008;19(4):335-41. doi: 10.1097/ICU.0b013e3283009ef8 pmid: 18545018
46. Salib GM, McDonald MB, Smolek M. Safety and efficacy of cyclosporine 0.05% drops versus unpreserved artificial tears in dry-eye patients having laser in situ keratomileusis. J Cataract Refract Surg. 2006;32(5):772-8. doi: 10.1016/j.jcrs.2005.10.034 pmid: 16765793
47. Park Y, Song JS, Choi CY, Yoon KC, Lee HK, Kim HS. A Randomized Multicenter Study Comparing 0.1%, 0.15%, and 0.3% Sodium Hyaluronate with 0.05% Cyclosporine in the Treatment of Dry Eye. J Ocul Pharmacol Ther. 2017;33(2):66-72. doi: 10.1089/jop.2016.0086 pmid: 27929721
48. Johnson ME, Murphy PJ, Boulton M. Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefes Arch Clin Exp Ophthalmol. 2006;244(1):109-12. doi: 10.1007/s00417-005-0028-1 pmid: 15983814
49. Salzillo R, Schiraldi C, Corsuto L, D'Agostino A, Filosa R, De Rosa M, et al. Optimization of hyaluronan-based eye drop formulations. Carbohydr Polym. 2016;153:275-283. doi: 10.1016/j.carbpol.2016.07.106. Erratum in: Carbohydr Polym. 2018;181:1235-1236 pmid: 27561497
50. Moilanen JA, Vesaluoma MH, Müller LJ, Tervo TM. Long-term corneal morphology after PRK by in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2003;44(3):1064-9. doi: 10.1167/iovs.02-0247 pmid: 12601030
51. Gambato C, Miotto S, Cortese M, Ghirlando A, Lazzarini D, Midena E. Mitomycin C-assisted photorefractive keratectomy in high myopia: a long-term safety study. Cornea. 2011;30(6):641-5. doi: 10.1097/ICO.0b013e31820123c8 pmid: 21242784
52. Tosi GM, Martone G, Bacci T, Tarantello A, Baiocchi S, Marigliani D, et al. Long-term evaluation of corneal sub-basal nerve recovery after photorefractive keratectomy and influence of pars plana vitrectomy. J Cell Physiol. 2019;234(5):7459-7466. doi: 10.1002/jcp.27504 pmid: 30417371
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times