Effects of repeated intravitreal bevacizumab administration on anterior segment parameters and limbal stem cells
Medical hypothesis, discovery & innovation in optometry,
Vol. 4 No. 4 (2023),
25 December 2023
,
Page 166-173
https://doi.org/10.51329/mehdioptometry187
Abstract
Background: Macular edema (ME) is fluid accumulation in the macula caused by vascular leakage. Repeated intravitreal bevacizumab (IVB) injections are extensively used to treat ME of different origins, are well tolerated, and have few side effects. This study evaluated the effects of repeated IVB injections on the anterior segment parameters and limbal stem cells (LSCs) in eyes with ME.Methods: This before–after study involved patients with ME of different causes who underwent repeated IVB injections at the Imam Khomeini Ophthalmology Center in Kermanshah, Iran. Before and after repeated IVB injections, anterior segment parameters were measured using anterior segment optical coherence tomography, and the LSCs were assessed using impression cytology.
Results: We enrolled 42 eyes of 42 patients with a mean (standard deviation [SD]) age of 59.6 (7.6) years, of whom 25 (59.5%) were men and 17 (40.5%) were women. The underlying diseases included diabetic ME in 30 eyes (71.4%), central (5 [11.9%]) or branch (3 [7.1%]) retinal vein occlusion, and choroidal neovascularization in 4 eyes (9.5%). The right eye was affected in 22 (52.4%) participants. The mean (SD) number of IVB injections was 4.3 (1.3). After repeated injections, the mean central corneal thickness (CCT) increased, whereas the mean anterior chamber angle (ACA) and anterior chamber depth (ACD) decreased (all P<0.001). Three patients developed LSC deficiency after repeated IVB injections for diabetic ME.
Conclusions: We observed a significant increase in the mean CCT and a decrease in the mean ACA and ACD after repeated IVB injections in our series. Three patients developed LSC deficiency after repeated IVB injections for diabetic ME management. The observed effect on LSC may cast doubt on the safety of repeated IVB injections; however, this finding must be verified in multicenter clinical trials with longer follow-up periods and larger study samples.
Keywords:
- Avastin
- bevacizumab-awwb
- optical coherence tomography
- corneal thickness measurement
- anterior chambers
- limbal stem cell
- limbal stem cell deficiecy
References
1. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Retinal and Ophthalmic Artery Occlusions Preferred Practice Pattern®. Ophthalmology. 2020;127(2):P259-P287. doi: 10.1016/j.ophtha.2019.09.028. Erratum in: Ophthalmology. 2020;127(9):1280. pmid: 31757501
2. Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, et al. Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res. 2018;63:20-68. doi: 10.1016/j.preteyeres.2017.10.006 pmid: 29126927
3. Das A, McGuire PG, Rangasamy S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology. 2015;122(7):1375-94. doi: 10.1016/j.ophtha.2015.03.024 pmid: 25935789
4. Alizadeh Ghavidel L, Mousavi F, Hashemi HS, Bagheri M. Optical coherence tomography angiography in intermediate uveitis-related cystoid macular edema. Med Hypothesis Discov Innov Ophthalmol. 2022;11(1):19-26. doi: 10.51329/mehdiophthal1441 pmid: 37641694
5. Zur D, Iglicki M, Loewenstein A. The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Res. 2019;62(4):231-236. doi: 10.1159/000499540 pmid: 31048580
6. Kazazi-Hyseni F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist. 2010;15(8):819-25. doi: 10.1634/theoncologist.2009-0317 pmid: 20688807
7. Kook D, Wolf A, Kreutzer T, Neubauer A, Strauss R, Ulbig M, et al. Long-term effect of intravitreal bevacizumab (avastin) in patients with chronic diffuse diabetic macular edema. Retina. 2008;28(8):1053-60. doi: 10.1097/IAE.0b013e318176de48 pmid: 18779710
8. Jhaveri CD, Glassman AR, Ferris FL 3rd, Liu D, Maguire MG, Allen JB, et al; DRCR Retina Network. Aflibercept Monotherapy or Bevacizumab First for Diabetic Macular Edema. N Engl J Med. 2022;387(8):692-703. doi: 10.1056/NEJMoa2204225 pmid: 35833805
9. Miller AR, Lee IJ, Wright ZC, Leys M. Five-Year Follow-Up of Repeated Intravitreal Bevacizumab for Macular Edema in a Pediatric Patient with Retinal Arteriovenous Malformation and Excellent Vision. Case Rep Ophthalmol Med. 2023;2023:5693657. doi: 10.1155/2023/5693657 pmid: 37920747
10. Hykin P, Prevost AT, Vasconcelos JC, Murphy C, Kelly J, Ramu J, et al; LEAVO Study Group. Clinical Effectiveness of Intravitreal Therapy With Ranibizumab vs Aflibercept vs Bevacizumab for Macular Edema Secondary to Central Retinal Vein Occlusion: A Randomized Clinical Trial. JAMA Ophthalmol. 2019;137(11):1256-1264. doi: 10.1001/jamaophthalmol.2019.3305 pmid: 31465100
11. Vader MJC, Schauwvlieghe AME, Verbraak FD, Dijkman G, Hooymans JMM, Los LI, et al; Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) Study Group. Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion: The Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) study, a Randomized Trial. Ophthalmol Retina. 2020;4(6):576-587. doi: 10.1016/j.oret.2019.12.019 pmid: 32107188
12. Gildea D, Tang B, Baily C, Ryan A. Real-world outcomes of intravitreal bevacizumab treat-and-extend for cystoid macular oedema secondary to central retinal vein occlusion. Int Ophthalmol. 2023;43(11):4105-4110. doi: 10.1007/s10792-023-02811-1 pmid: 37481673
13. Hamidi NA, Güne? ?B, Baykara M. Evaluation of intraocular pressure change and anterior segment parameters after intravitreal bevacizumab injection - Cannula size matters. Saudi J Ophthalmol. 2021;34(4):247-250. doi: 10.4103/1319-4534.322606 pmid: 34527866
14. Arslan GD, Guven D, Alkan AA, Kacar H, Demir M. Short term effects of intravitreal anti-vascular endothelial growth factor agents on cornea, anterior chamber, and intraocular pressure. Cutan Ocul Toxicol. 2019;38(4):344-348. doi: 10.1080/15569527.2019.1616749 pmid: 31092017
15. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol. 2009;37(1):81-9. doi: 10.1111/j.1442-9071.2008.01823.x pmid: 19016809
16. Aumann S, Donner S, Fischer J, Müller F. Optical Coherence Tomography (OCT): Principle and Technical Realization. 2019 Aug 14. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham (CH): Springer; 2019. Chapter 3. pmid: 32091846
17. Han SB, Mehta JS, Liu YC, Mohamed-Noriega K. Advances and Clinical Applications of Anterior Segment Imaging Techniques. J Ophthalmol. 2016;2016:8529406. doi: 10.1155/2016/8529406 pmid: 28127466
18. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119(8):1179-85. doi: 10.1001/archopht.119.8.1179 pmid: 11483086
19. Loeffler M, Roeder I. Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models--a conceptual approach. Cells Tissues Organs. 2002;171(1):8-26. doi: 10.1159/000057688 pmid: 12021488
20. Capella MJ, Alvarez de Toledo J, de la Paz MF. Insuficiencia limbar secundaria a múltiples inyecciones intravítreas [Limbal stem cell deficiency following multiple intravitreal injections]. Arch Soc Esp Oftalmol. 2011;86(3):89-92. Spanish. doi: 10.1016/j.oftal.2010.11.018 pmid 21511104
21. Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022;28(10):923-1049. doi: 10.1016/j.eprac.2022.08.002. Erratum in: Endocr Pract. 2023;29(1):80-81. pmid: 35963508
22. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334-1357. doi: 10.1161/HYPERTENSIONAHA.120.15026 pmid: 32370572
23. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082-e1143. doi: 10.1161/CIR.0000000000000625. Erratum in: Circulation. 2019;139(25):e1182-e1186. Erratum in: Circulation. 2023;148(7):e5. pmid: 30586774
24. Ip M, Hendrick A. Retinal Vein Occlusion Review. Asia Pac J Ophthalmol (Phila). 2018;7(1):40-45. doi: 10.22608/APO.2017442 pmid: 29280368
25. Gualino V, Tadayoni R, Cohen SY, Erginay A, Fajnkuchen F, Haouchine B, et al. Optical Coherence Tomography, Fluorescein Angiography, and Diagnosis of Choroidal Neovascularization in Age-Related Macular Degeneration. Retina. 2019;39(9):1664-1671. doi: 10.1097/IAE.0000000000002220 pmid: 30045134
26. Poli M, Janin H, Justin V, Auxenfans C, Burillon C, Damour O. Keratin 13 immunostaining in corneal impression cytology for the diagnosis of limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2011;52(13):9411-5. doi: 10.1167/iovs.10-7049 pmid: 22064992
27. Asam JS, Polzer M, Tafreshi A, Hirnschall N, Findl O. Anterior Segment OCT. 2019. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham (CH): Springer; 2019. Chapter 13. pmid: 32091839
28. Afarid M, Sadegi Sarvestani A, Rahat F, Azimi A. Intravitreal Injection of Bevacizumab: Review of our previous Experience. Iran J Pharm Res. 2018;17(3):1093-1098. pmid: 30127831
29. Calonge M, Diebold Y, Sáez V, Enríquez de Salamanca A, García-Vázquez C, Corrales RM, et al. Impression cytology of the ocular surface: a review. Exp Eye Res. 2004;78(3):457-72. doi: 10.1016/j.exer.2003.09.009 pmid: 15106925
30. Doughty MJ, Laiquzzaman M, Müller A, Oblak E, Button NF. Central corneal thickness in European (white) individuals, especially children and the elderly, and assessment of its possible importance in clinical measures of intra-ocular pressure. Ophthalmic Physiol Opt. 2002;22(6):491-504. doi: 10.1046/j.1475-1313.2002.00053.x pmid: 12477013
31. Chiang CC, Chen WL, Lin JM, Tsai YY. Effect of bevacizumab on human corneal endothelial cells: a six-month follow-up study. Am J Ophthalmol. 2008;146(5):688-91. doi: 10.1016/j.ajo.2008.06.002 pmid: 18687417
32. Pérez-Rico C, Benítez-Herreros J, Castro-Rebollo M, Gómez-Sangil Y, Germain F, Montes-Mollón MA, et al. Effect of intravitreal ranibizumab on corneal endothelium in age-related macular degeneration. Cornea. 2010;29(8):849-52. doi: 10.1097/ICO.0b013e3181ca33d2 pmid: 20508510
33. Hashemi M, Falavarjani KG, Aghai GH, Aghdam KA, Gordiz A. Anterior segment study with the Pentacam Scheimpflug camera in refractive surgery candidates. Middle East Afr J Ophthalmol. 2013;20(3):212-6. doi: 10.4103/0974-9233.114793 pmid: 24014983
34. Al-Mezaine HS, Al-Obeidan S, Kangave D, Sadaawy A, Wehaib TA, Al-Amro SA. The relationship between central corneal thickness and degree of myopia among Saudi adults. Int Ophthalmol. 2009;29(5):373-8. doi: 10.1007/s10792-008-9249-8 pmid: 18587538
35. Belovay GW, Goldberg I. The thick and thin of the central corneal thickness in glaucoma. Eye (Lond). 2018;32(5):915-923. doi: 10.1038/s41433-018-0033-3 pmid: 29445115
36. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-20; discussion 829-30. doi: 10.1001/archopht.120.6.714 pmid: 12049575
37. Channa R, Mir F, Shah MN, Ali A, Ahmad K. Central corneal thickness of Pakistani adults. J Pak Med Assoc. 2009;59(4):225-8. pmid: 19402284
38. Kelly DS, Sabharwal S, Ramsey DJ, Morkin MI. The effects of female sex hormones on the human cornea across a woman’s life cycle. BMC Ophthalmol. 2023;23(1):358. doi: 10.1186/s12886-023-03085-y pmid: 37587412
39. Mishra D, Bhushan P, Sachan S, Singh MK, Jayadev C, Kusumgar P. Variations in the central corneal thickness during the menstrual cycle in Indian women. Indian J Ophthalmol. 2020;68(12):2918-2920. doi: 10.4103/ijo.IJO_1207_20 pmid: 33229670
40. Galgauskas S, Juodkaite G, Tutkuvien? J. Age-related changes in central corneal thickness in normal eyes among the adult Lithuanian population. Clin Interv Aging. 2014;9:1145-51. doi: 10.2147/CIA.S61790 pmid: 25075183
41. Moraru A, Pînzaru G, Mo?oc A, Costin D, Br?ni?teanu D. Incidence of ocular hypertension after intravitreal injection of anti-VEGF agents in the treatment of neovascular AMD. Rom J Ophthalmol. 2017;61(3):207-211. doi: 10.22336/rjo.2017.38 pmid: 29450400
42. Bakri SJ, McCannel CA, Edwards AO, Moshfeghi DM. Persisent ocular hypertension following intravitreal ranibizumab. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):955-8. doi: 10.1007/s00417-008-0819-2 pmid: 18425523
43. Hashemi H, Khabazkhoob M, Mohazzab-Torabi S, Emamian MH, Shariati M, Dadbin N, et al. Anterior Chamber Angle and Anterior Chamber Volume in a 40- to 64-Year-Old Population. Eye Contact Lens. 2016;42(4):244-9. doi: 10.1097/ICL.0000000000000192 pmid: 26372475
44. Güler M, Capk?n M, Sim?ek A, Bilak S, Bilgin B, Hakim Reyhan A, et al. Short-term effects of intravitreal bevacizumab on cornea and anterior chamber. Curr Eye Res. 2014;39(10):989-93. doi: 10.3109/02713683.2014.888452 pmid: 24588314
45. Eftekhari Milani A, Bagheri M, Niyousha MR, Rezaei L, Hazeri S, Safarpoor S, et al. Comparison of Clinical Outcomes of Intravitreal Bevacizumab and Aflibercept in Type 1 Prethreshold Retinopathy of Prematurity in Posterior Zone II. J Curr Ophthalmol. 2022;34(1):87-92. doi: 10.4103/joco.joco_193_21 pmid: 35620366
46. Fan YY, Huang YS, Huang CY, Hsu JF, Shih CP, Hwang YS, et al. Neurodevelopmental Outcomes after Intravitreal Bevacizumab Therapy for Retinopathy of Prematurity: A Prospective Case-Control Study. Ophthalmology. 2019;126(11):1567-1577. doi: 10.1016/j.ophtha.2019.03.048 pmid: 30954553
47. Celik Dulger S, Citirik M, Bahadir Camgoz E, Teke MY. Intravitreal injections during the COVID-19 pandemic era. Med Hypothesis Discov Innov Optom.2021; 2(2): 50-55. doi: 10.51329/mehdioptometry125
48. Nureen L, Di Girolamo N. Limbal Epithelial Stem Cells in the Diabetic Cornea. Cells. 2023;12(20):2458. doi: 10.3390/cells12202458 pmid: 37887302
49. Ueno H, Hattori T, Kumagai Y, Suzuki N, Ueno S, Takagi H. Alterations in the corneal nerve and stem/progenitor cells in diabetes: preventive effects of insulin-like growth factor-1 treatment. Int J Endocrinol. 2014;2014:312401. doi: 10.1155/2014/312401 pmid: 24696681
50. Chen D, Wang L, Guo X, Zhang Z, Xu X, Jin ZB, et al. Evaluation of Limbal Stem Cells in Patients With Type 2 Diabetes: An In Vivo Confocal Microscopy Study. Cornea. 2024;43(1):67-75. doi: 10.1097/ICO.0000000000003334 pmid: 37399570
2. Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, et al. Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res. 2018;63:20-68. doi: 10.1016/j.preteyeres.2017.10.006 pmid: 29126927
3. Das A, McGuire PG, Rangasamy S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology. 2015;122(7):1375-94. doi: 10.1016/j.ophtha.2015.03.024 pmid: 25935789
4. Alizadeh Ghavidel L, Mousavi F, Hashemi HS, Bagheri M. Optical coherence tomography angiography in intermediate uveitis-related cystoid macular edema. Med Hypothesis Discov Innov Ophthalmol. 2022;11(1):19-26. doi: 10.51329/mehdiophthal1441 pmid: 37641694
5. Zur D, Iglicki M, Loewenstein A. The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Res. 2019;62(4):231-236. doi: 10.1159/000499540 pmid: 31048580
6. Kazazi-Hyseni F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist. 2010;15(8):819-25. doi: 10.1634/theoncologist.2009-0317 pmid: 20688807
7. Kook D, Wolf A, Kreutzer T, Neubauer A, Strauss R, Ulbig M, et al. Long-term effect of intravitreal bevacizumab (avastin) in patients with chronic diffuse diabetic macular edema. Retina. 2008;28(8):1053-60. doi: 10.1097/IAE.0b013e318176de48 pmid: 18779710
8. Jhaveri CD, Glassman AR, Ferris FL 3rd, Liu D, Maguire MG, Allen JB, et al; DRCR Retina Network. Aflibercept Monotherapy or Bevacizumab First for Diabetic Macular Edema. N Engl J Med. 2022;387(8):692-703. doi: 10.1056/NEJMoa2204225 pmid: 35833805
9. Miller AR, Lee IJ, Wright ZC, Leys M. Five-Year Follow-Up of Repeated Intravitreal Bevacizumab for Macular Edema in a Pediatric Patient with Retinal Arteriovenous Malformation and Excellent Vision. Case Rep Ophthalmol Med. 2023;2023:5693657. doi: 10.1155/2023/5693657 pmid: 37920747
10. Hykin P, Prevost AT, Vasconcelos JC, Murphy C, Kelly J, Ramu J, et al; LEAVO Study Group. Clinical Effectiveness of Intravitreal Therapy With Ranibizumab vs Aflibercept vs Bevacizumab for Macular Edema Secondary to Central Retinal Vein Occlusion: A Randomized Clinical Trial. JAMA Ophthalmol. 2019;137(11):1256-1264. doi: 10.1001/jamaophthalmol.2019.3305 pmid: 31465100
11. Vader MJC, Schauwvlieghe AME, Verbraak FD, Dijkman G, Hooymans JMM, Los LI, et al; Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) Study Group. Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion: The Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) study, a Randomized Trial. Ophthalmol Retina. 2020;4(6):576-587. doi: 10.1016/j.oret.2019.12.019 pmid: 32107188
12. Gildea D, Tang B, Baily C, Ryan A. Real-world outcomes of intravitreal bevacizumab treat-and-extend for cystoid macular oedema secondary to central retinal vein occlusion. Int Ophthalmol. 2023;43(11):4105-4110. doi: 10.1007/s10792-023-02811-1 pmid: 37481673
13. Hamidi NA, Güne? ?B, Baykara M. Evaluation of intraocular pressure change and anterior segment parameters after intravitreal bevacizumab injection - Cannula size matters. Saudi J Ophthalmol. 2021;34(4):247-250. doi: 10.4103/1319-4534.322606 pmid: 34527866
14. Arslan GD, Guven D, Alkan AA, Kacar H, Demir M. Short term effects of intravitreal anti-vascular endothelial growth factor agents on cornea, anterior chamber, and intraocular pressure. Cutan Ocul Toxicol. 2019;38(4):344-348. doi: 10.1080/15569527.2019.1616749 pmid: 31092017
15. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol. 2009;37(1):81-9. doi: 10.1111/j.1442-9071.2008.01823.x pmid: 19016809
16. Aumann S, Donner S, Fischer J, Müller F. Optical Coherence Tomography (OCT): Principle and Technical Realization. 2019 Aug 14. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham (CH): Springer; 2019. Chapter 3. pmid: 32091846
17. Han SB, Mehta JS, Liu YC, Mohamed-Noriega K. Advances and Clinical Applications of Anterior Segment Imaging Techniques. J Ophthalmol. 2016;2016:8529406. doi: 10.1155/2016/8529406 pmid: 28127466
18. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119(8):1179-85. doi: 10.1001/archopht.119.8.1179 pmid: 11483086
19. Loeffler M, Roeder I. Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models--a conceptual approach. Cells Tissues Organs. 2002;171(1):8-26. doi: 10.1159/000057688 pmid: 12021488
20. Capella MJ, Alvarez de Toledo J, de la Paz MF. Insuficiencia limbar secundaria a múltiples inyecciones intravítreas [Limbal stem cell deficiency following multiple intravitreal injections]. Arch Soc Esp Oftalmol. 2011;86(3):89-92. Spanish. doi: 10.1016/j.oftal.2010.11.018 pmid 21511104
21. Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022;28(10):923-1049. doi: 10.1016/j.eprac.2022.08.002. Erratum in: Endocr Pract. 2023;29(1):80-81. pmid: 35963508
22. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334-1357. doi: 10.1161/HYPERTENSIONAHA.120.15026 pmid: 32370572
23. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082-e1143. doi: 10.1161/CIR.0000000000000625. Erratum in: Circulation. 2019;139(25):e1182-e1186. Erratum in: Circulation. 2023;148(7):e5. pmid: 30586774
24. Ip M, Hendrick A. Retinal Vein Occlusion Review. Asia Pac J Ophthalmol (Phila). 2018;7(1):40-45. doi: 10.22608/APO.2017442 pmid: 29280368
25. Gualino V, Tadayoni R, Cohen SY, Erginay A, Fajnkuchen F, Haouchine B, et al. Optical Coherence Tomography, Fluorescein Angiography, and Diagnosis of Choroidal Neovascularization in Age-Related Macular Degeneration. Retina. 2019;39(9):1664-1671. doi: 10.1097/IAE.0000000000002220 pmid: 30045134
26. Poli M, Janin H, Justin V, Auxenfans C, Burillon C, Damour O. Keratin 13 immunostaining in corneal impression cytology for the diagnosis of limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2011;52(13):9411-5. doi: 10.1167/iovs.10-7049 pmid: 22064992
27. Asam JS, Polzer M, Tafreshi A, Hirnschall N, Findl O. Anterior Segment OCT. 2019. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham (CH): Springer; 2019. Chapter 13. pmid: 32091839
28. Afarid M, Sadegi Sarvestani A, Rahat F, Azimi A. Intravitreal Injection of Bevacizumab: Review of our previous Experience. Iran J Pharm Res. 2018;17(3):1093-1098. pmid: 30127831
29. Calonge M, Diebold Y, Sáez V, Enríquez de Salamanca A, García-Vázquez C, Corrales RM, et al. Impression cytology of the ocular surface: a review. Exp Eye Res. 2004;78(3):457-72. doi: 10.1016/j.exer.2003.09.009 pmid: 15106925
30. Doughty MJ, Laiquzzaman M, Müller A, Oblak E, Button NF. Central corneal thickness in European (white) individuals, especially children and the elderly, and assessment of its possible importance in clinical measures of intra-ocular pressure. Ophthalmic Physiol Opt. 2002;22(6):491-504. doi: 10.1046/j.1475-1313.2002.00053.x pmid: 12477013
31. Chiang CC, Chen WL, Lin JM, Tsai YY. Effect of bevacizumab on human corneal endothelial cells: a six-month follow-up study. Am J Ophthalmol. 2008;146(5):688-91. doi: 10.1016/j.ajo.2008.06.002 pmid: 18687417
32. Pérez-Rico C, Benítez-Herreros J, Castro-Rebollo M, Gómez-Sangil Y, Germain F, Montes-Mollón MA, et al. Effect of intravitreal ranibizumab on corneal endothelium in age-related macular degeneration. Cornea. 2010;29(8):849-52. doi: 10.1097/ICO.0b013e3181ca33d2 pmid: 20508510
33. Hashemi M, Falavarjani KG, Aghai GH, Aghdam KA, Gordiz A. Anterior segment study with the Pentacam Scheimpflug camera in refractive surgery candidates. Middle East Afr J Ophthalmol. 2013;20(3):212-6. doi: 10.4103/0974-9233.114793 pmid: 24014983
34. Al-Mezaine HS, Al-Obeidan S, Kangave D, Sadaawy A, Wehaib TA, Al-Amro SA. The relationship between central corneal thickness and degree of myopia among Saudi adults. Int Ophthalmol. 2009;29(5):373-8. doi: 10.1007/s10792-008-9249-8 pmid: 18587538
35. Belovay GW, Goldberg I. The thick and thin of the central corneal thickness in glaucoma. Eye (Lond). 2018;32(5):915-923. doi: 10.1038/s41433-018-0033-3 pmid: 29445115
36. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-20; discussion 829-30. doi: 10.1001/archopht.120.6.714 pmid: 12049575
37. Channa R, Mir F, Shah MN, Ali A, Ahmad K. Central corneal thickness of Pakistani adults. J Pak Med Assoc. 2009;59(4):225-8. pmid: 19402284
38. Kelly DS, Sabharwal S, Ramsey DJ, Morkin MI. The effects of female sex hormones on the human cornea across a woman’s life cycle. BMC Ophthalmol. 2023;23(1):358. doi: 10.1186/s12886-023-03085-y pmid: 37587412
39. Mishra D, Bhushan P, Sachan S, Singh MK, Jayadev C, Kusumgar P. Variations in the central corneal thickness during the menstrual cycle in Indian women. Indian J Ophthalmol. 2020;68(12):2918-2920. doi: 10.4103/ijo.IJO_1207_20 pmid: 33229670
40. Galgauskas S, Juodkaite G, Tutkuvien? J. Age-related changes in central corneal thickness in normal eyes among the adult Lithuanian population. Clin Interv Aging. 2014;9:1145-51. doi: 10.2147/CIA.S61790 pmid: 25075183
41. Moraru A, Pînzaru G, Mo?oc A, Costin D, Br?ni?teanu D. Incidence of ocular hypertension after intravitreal injection of anti-VEGF agents in the treatment of neovascular AMD. Rom J Ophthalmol. 2017;61(3):207-211. doi: 10.22336/rjo.2017.38 pmid: 29450400
42. Bakri SJ, McCannel CA, Edwards AO, Moshfeghi DM. Persisent ocular hypertension following intravitreal ranibizumab. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):955-8. doi: 10.1007/s00417-008-0819-2 pmid: 18425523
43. Hashemi H, Khabazkhoob M, Mohazzab-Torabi S, Emamian MH, Shariati M, Dadbin N, et al. Anterior Chamber Angle and Anterior Chamber Volume in a 40- to 64-Year-Old Population. Eye Contact Lens. 2016;42(4):244-9. doi: 10.1097/ICL.0000000000000192 pmid: 26372475
44. Güler M, Capk?n M, Sim?ek A, Bilak S, Bilgin B, Hakim Reyhan A, et al. Short-term effects of intravitreal bevacizumab on cornea and anterior chamber. Curr Eye Res. 2014;39(10):989-93. doi: 10.3109/02713683.2014.888452 pmid: 24588314
45. Eftekhari Milani A, Bagheri M, Niyousha MR, Rezaei L, Hazeri S, Safarpoor S, et al. Comparison of Clinical Outcomes of Intravitreal Bevacizumab and Aflibercept in Type 1 Prethreshold Retinopathy of Prematurity in Posterior Zone II. J Curr Ophthalmol. 2022;34(1):87-92. doi: 10.4103/joco.joco_193_21 pmid: 35620366
46. Fan YY, Huang YS, Huang CY, Hsu JF, Shih CP, Hwang YS, et al. Neurodevelopmental Outcomes after Intravitreal Bevacizumab Therapy for Retinopathy of Prematurity: A Prospective Case-Control Study. Ophthalmology. 2019;126(11):1567-1577. doi: 10.1016/j.ophtha.2019.03.048 pmid: 30954553
47. Celik Dulger S, Citirik M, Bahadir Camgoz E, Teke MY. Intravitreal injections during the COVID-19 pandemic era. Med Hypothesis Discov Innov Optom.2021; 2(2): 50-55. doi: 10.51329/mehdioptometry125
48. Nureen L, Di Girolamo N. Limbal Epithelial Stem Cells in the Diabetic Cornea. Cells. 2023;12(20):2458. doi: 10.3390/cells12202458 pmid: 37887302
49. Ueno H, Hattori T, Kumagai Y, Suzuki N, Ueno S, Takagi H. Alterations in the corneal nerve and stem/progenitor cells in diabetes: preventive effects of insulin-like growth factor-1 treatment. Int J Endocrinol. 2014;2014:312401. doi: 10.1155/2014/312401 pmid: 24696681
50. Chen D, Wang L, Guo X, Zhang Z, Xu X, Jin ZB, et al. Evaluation of Limbal Stem Cells in Patients With Type 2 Diabetes: An In Vivo Confocal Microscopy Study. Cornea. 2024;43(1):67-75. doi: 10.1097/ICO.0000000000003334 pmid: 37399570
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times