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ABSTRACT 

Aging is the common denominator and the highest risk factor for macular degeneration and Alzheimers 

Disease (AD). Important pathological hallmarks common to both diseases are the presence of amyloid β 

(Aβ) in the senile plaques of the AD brain and in the drusen of age-related macular degeneration (AMD) 

patients, oxidative stress, and apoptotic cell death. Data suggest that a common pathogenic mechanism 

might exist between AMD and AD. Brain and eye depend on redox electrons from pyridinic and flavinic 

nucleotides to produce ATP, and reactive oxygen intermediates (ROI). Disorganization of mitochondrial 

structure and decline in mitochondrial oxidative phosphorylation (OXPHOS) functioning, as well as 

hypometabolism and alterations in mitochondrial DNA are aging features. Because ROI damage and 

mitochondrial dysregulation are prominent in AMD and AD and their relationship to the redox state is 

unclear we addressed a new hypothesis according to which the interaction of melatonin vs Aβ are 

intertwined to balance of the intra- and extra-mitochondrial energy production. This balance would be 

impaired by the ageing process and environmental/genetic factors, ultimately leading to AD and /or AMD.  
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INTRODUCTION  

Aging is a common risk factor in both age-related macular 

degeneration (AMD) and Alzheimer's disease (AD). The 

incidence of AMD is increasing in the aging population. The 

World Health Organization has stated that AMD is the most 

common form of blindness, with 1.75 million people in the US 

alone and 7 million people at risk [1]. AD is the most common 

dementia, doubling every 6 years after the age of 65. In 

Western countries, AD affects 1–3% of people aged 60–64 

years, and 3–12% of people aged 70–80 years. It is estimated 

that by the mid-century (2050) as much as 13,2 million people 

will be affected by AD in the US alone [2]. At the molecular level 

the pathognostic feature of AD is the accumulation of the 39-4 

amino acid long β-Amyloid (Aβ) peptide with more that 50% of 
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autopsy cases showing positive correlation. Aβ is also deposited 

in Drusen in AMD [3]. A prospective population-based 

Rotterdam Study found that the neuronal degeneration 

occurring in AMD and AD may, to some extent, represent an 

evidence of a possible epidemiological connection between the 

two diseases, but with different origin as for genetic risks [4]. 

Interestingly, there is a slight prevalence of the female gender 

towards AMD [5] and AD [6,7]. AMD and AD appear linked 

because the retina is part of the brain [8], deriving from the 

neural tube which is the precursor of CNS development; 

moreover, both have blood–tissue barriers. At present, chronic 

oxidative stress, inflammation and altered fatty acid 

metabolism are strongly linked to AMD [9,10] and also to  AD 

pathogenesis [11,12,13,14].   

 

Aging and the mitochondrion 

CNS and retina critically depend on oxygen (O2) supply [15], [16 

] and are sensitive to mitochondrial dysfunction [17 ]. However, 

mitochondrial disorders, human diseases characterized
 

by 

genetic defects of the oxidative phosphorylation (OXPHOS), 

affect the visual and the nervous system, even though these 

display a relative scarcity of mitochondria [17]. Mitochondrial 

dysfunctions are involved in pathologies associated with many 

diseases, such as, cancer, neurodegenerative diseases and 

aging. Aging is an incompletely understood process, in which a 

decline in mitochondrial function seems to be involved [18].  

Mitochondria display two membranes, the outer membrane 

allowing the passage of low molecular-weight substances 

thanks to porin expression, [19], and the inner membrane (IM) 

housing the electron transfer chain (ETC) and providing a highly 

efficient barrier to the ion flow. The IM forms invaginations 

called cristae where the ETC complexes I-IV are embedded. 

These enable the transfer of electrons from NADH and FADH 

synthesized by glycolysis, fatty acid oxidation and Tricarboxylic 

acid cycle (TCA) to reduce molecular O2 to water [20]. During 

electron transfer, energy is used to pump protons in the intra 

membrane space, which promotes ATP generation via OXPHOS, 

thanks to the nanomotor ATP synthase (complex V). Proton 

gradient generates a chemiosmotic proton potential driving 

ADP phosphorylation of  ADP to ATP (Figure 1). 

In yeast, oligomeric organization of ATP synthase was reported 

to be essential to the maintenance of the mitochondrial cristae 

architecture and to correlate with maximum energy conversion 

capability [21], with an age-associated decline in ATP synthase 

oligomers. Prior data [20,22,23,24] suggest that the electron 

transport chain (ETC) and F1Fo-ATP synthase are functionally 

expressed in extramitochondrial locations of the central 

nervous system, i.e: rod outer segment (OS) disks and isolated 

myelin vesicles [22, 23, 24]. While the mitochondrial proteome 

consists of more than 1,000 different proteins, many proteomic 

analyses of cellular membranes have found the exclusive 

expression of proteins from the five respiratory complexes [ 

(reviewed in Panfoli e al. (25)].  Moreover, the enzymes of the 

Tricarboxylic Acid (TCA) Cycle are catalytically active in the rod 

outer segment [20], in keeping with the knowledge that  many 

mitochondrial proteins possess dual or multiple localization 

[26] and that mitochondria are dynamic organelles, [27] . Ex 

vivo staining of the optic nerve and retina [22,23] with 

MitoTracker (MT), a fluorescent mitochondrial probe sensitive 

to proton potential , showed that a proton potential  is present 

in rod OS [28]. Mitochondria are currently believed to be 

central to a both life and death processes, such as energy 

production, and generation of reactive oxygen intermediates 

(ROI). However ROI would also be generated by the ectopic ETC 

coupled to ATP synthase. In fact an ETC not adequately coupled 

may generate ROI in turn oxidizing the polyunsaturated fatty 

acids of which the rod OS is rich. 

 

Figure 1. A schematic of the electron transport chain occurring in the 

inner mitochondrial  membrane. 

 

Aging is consistently related to oxidative damage of cellular 

macromolecules due to ROI production [26, 29]. Impairment in 

mitochondrial OXPHOS functioning, alterations in mitochondrial 

DNA (mtDNA), increased production of ROI, with 

disorganization of mitochondrial structure have been reported 

with aging [30]. During the electron transfer 0.4% to 5% of ETC 

participate in the formation of superoxide radicals (O2
•-

) [31], 

therefore ROI are a physiological by-product of the ETC. 

However, an increase in O2
•-

 production can activate the 

mitochondrial permeability transition pore [32], ultimately 

committing cell to death by apoptosis. A study by Ghosh et al 

[33.] showed that a redox shift precedes ROI changes in 3xTg-

AD mice, i.e. a more oxidized redox state and a lower 

antioxidant GSH defense precedes neuronal damage, and  the 

onset of cognitive defects. This means that even before cells 

accumulate harmful free radicals, they have changes in their 

reduction-oxidation reactions (redox). These results would 

explain why synapses go haywire long before people with 
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Alzheimer’s disease experience any problems with memory 

[13].  The findings that the “ redox shift precedes ROI changes‘’ 

in AD mice directly points mostly to our hypothesis showing 

that the melatonin-Aβaxis may alter mitochondrial energy 

balance during aging leading to AMD and or AD. Mitochondrial 

DNA polymorphisms that augment ATP production can reduce 

Aβ load in mice [34]. It was reported that mitochondrial DNA  

(mtDNA) mutations can promote aging also independently of  

enhanced ROI production [35] accumulation of mutations in 

mtDNA [35]. These were in turn associated to reduced life span, 

and to aging signs. 

In aging the ETC enzyme activity decrease, along with 

mitochondrial membrane potential. Parallely mitochondrial 

proteins and mtDNA are oxidatively damaged and there is a 

quantitative increase in mtDNA mutations. For example, Liang 

FQ et al., 2003 [36] showed that, when exposed to H2O2, human 

retinal pigmented epithelium (RPE) cells or rod outer segments 

display mtDNA but not nDNA damage. Authors concluded that 

the susceptibility of mtDNA to oxidative damage, and 

decreased anti-oxidant system capability provides a rationale 

for mitochondria based model of AMD [37, 38].   Using the 

same rationale Liang FQ et a., 2004 [37] observed that RPE cells 

pretreated with melatonin show a significant decrease in 

mtDNA damage. Another pathway to mitochondrial damage is 

through the action of oligomeric Aβ to induce alterations of  

intracellular Ca(2+) levels and to promote the excess 

accumulation of intracellular Ca(2+) into mitochondria, thus 

inducing the mitochondrial permeability transition pore 

opening [31]. Increasing evidence suggests that the amyloid 

precursor protein (APP) and Aβ accumulate in mitochondrial 

membranes, cause mitochondrial structural and functional 

damage by generating ROI, hindering normal neuronal 

functioning [39,40]. Inhibition of ATP synthase inhibits the 

electron transport and OXPHOS. Such inhibition can be induced 

by Aβ [41].  Rhein et al, 2009 [42] reported  that  Aβ also lead to 

impaired functions of the mitochondria in human 

neuroblastoma cells.  

 

Drusen and Amyloid plaques, different but the same? 

Extracellular protein deposits called drusen, accumulating 

between the RPE and photoreceptors, are a typical feature of 

non-neovascular AMD [43]. Drusen area and size positively 

correlate to risk of AMD progression [44]. Drusen are composed 

of acute phase proteins, complement components, 

proteglycans, apolipoproteins, metal ions (Fe, Zn, Cu), 

proteases ,cholinesterases, lipids [16,17,22], polysaccharides 

and ATP synthase subunit β [45] Some of these components are 

made by the eye itself, i.e.  retina, RPE and/or choroid [46]. 

Wang and Wang [47] showed that the most abundant 

molecules in Drusen where esterified  cholesterol and 

phosphatidine choline  which suggest abnormalities in the 

metabolism of cholesterol, a risk factor also in AD [48]. Isas et 

al, 2010 [49], found that among the amyloid forms (oligomers, 

protofibrils, fibrils) the non-fibrilar oligomers where the most 

abundant form of amyloid in Drusen. Recently, amyloid vesicles 

as forms pervading in Drusen have also been  reported in brains 

[50] of transgenic mice expressing human APP, suggesting the 

importance of APP processing in both eye and brain. Aβ 

accumulation has also been demonstrated in  association with 

drusen in eyes from AMD patients [51, 52, 53] mice models for 

AMD [50] and in RPE [3]. Recently, Barrett et al., 2012 [54] 

showed that cholesterol directly binds to the C99 fragment of 

APP. This fragment, the result of β-secretase cleavage, is 

important for AD pathology because it is cleaved by γ-secretase 

to release Aβ.  

A  causative role of oxidative stress and light exposure in the 

pathogenesis of AMD and other retinal degeneration has also 

been proposed [55 ] [56 ] [57] [58] [59] [60]. A critical role of 

SOD1 in protecting from AMD has been reported  [61]. The 

choroid and retina are  the highest oxygen-consuming tissues in 

the human body. The OS expressing oxygen-absorbing 

cytochrome c oxidase [22], would be at risk of oxidative stress 

oxidizing disk membranes, that contain high levels of 

polyunsaturated fatty acids. ROI are in fact a by-product of the 

ETC [17] [62] [63]. The result may be photoreceptor loss and 

visual impairment [64]. Inflammatory responses secondary to 

oxidative stress have been involved in age-related degenerative 

diseases. Oxidative stress induces the assembly of 

inflammatory protein complexes, the so-called inflammasomes, 

involving nod-like receptor protein 3 (NLRP3) [12]. The 

inflammasomes recognize danger signals, such as metabolic 

stress from ROI production, triggering inflammatory responses 

[12]. It was reported that misfolded protein aggregates such as 

amyloid-β can trigger NLRP3 inflammasome representing a 

pathogenetic mechanism in AD. Damaged mitochondria 

undergo digestion through mitophagy, a specialized form of 

autophagy, whose  impairment may cause aging [65]. 

Autophagic capacity seems to be  compromised in AD [66] and 

AMD [67]. Melatonin exerting its activity on Aβ in inflammation 

was  presented by the work of  Zhou et al. [68.] who found that 

microglia. i.e. the phagocytes of the nervous system, decrease 

superoxide anion production by impairing  NADPH oxidase 

assembly in cultures of microglia.   

 

APP/Aβ metabolism in the Eye and Brain 

Characteristic pathological features of AD are cerebral plaques 

with β-amyloid peptide and neurofibrillary tangles. However, as 

Aβ and tangles appear a normal finding in brains of non-
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demented individuals, these may be related to brain aging, 

independently of AD, suggesting their wider hypometabolic 

origin. The 2011 AD criteria proposes the presence of low CSF 

Aβ and decreased glucose utilization as AD biomarkers. Aβ is in 

small amount deposited in the brain [69] and in normal retina 

[51, 70] and the levels of these deposits increase during aging 

[71]. Johnson et al. [51] where the first to propose the 

pathogenic role of Aβ in AMD. Activated component 

complement component of RPE deposits where co localized to 

Aβ detected by using immunohistochemical technique. It was 

shown that Aβ can be detected in sub RPE basal deposits and 

neurovascular lesions in murine model of AMD [72].   

Accumulation of Aβ in the eye occurs primarily among the 

photoreceptor OS and in the interphase between the RPE and 

Bruch’s membrane. Indeed, an origin of drusen in OS has never 

been supposed, but considering their ability to manipulate O2 

should be taken into consideration. Such accumulation of Aβ on 

photoreceptor outer segments with age was confirmed in 

human retina using immunohistochemistry [71].  This implies 

that the accumulation of Aβ is associated with efficiency of RPE 

phagocytic process [3], but also through APP metabolism [73].  

Sarangarajan and Apte [74] showed that signaling pathways 

that upregulate melanization in the RPE may be  implicated in 

down-regulation of the rod OS phagocytosis by RPE, 

maintaining a balance between ingestion and 

degradation/recycling lowering metabolic load, suggesting a 

possible Aβ vs melatonin/melanin interaction in the balance of 

mitochondrial energy metabolism. Yoshida et al. [75]  showed 

that human RPE expresses constitutively all  of the genes that 

regulate Aβ production ,e.g., APP,α ,β,γ secretase and 

neprylisin.  

Melanization activating pathways may also modulate O2 

consumption by the photoreceptors, and the rate of 

photoisomerization events such that the net effect may be a 

reduction in drusen and/or lipofuscin accumulation. This 

interaction  may play a role in decreasing choroidal 

neovascularization. The hormone melatonin may have 

regulatory effects on APP metabolism. Interestingly, melatonin 

plays a fundamental role in retinogensis through APP 

metabolism [10,73,75]. Cultured RPE cells exposed to Aβ 

increase the expression of VEGF and decrease Pigment 

Epithelium-derived factor (PEDF, a potent antiangiogenic 

factor). Balance between these two molecules are important 

for healthy retina [76].  

Melatonin treatment inhibited normal levels of secretion of 

soluble APP (sAPP) in different cell lines by interfering with APP 

full maturation [77]. Melatonin also affects the mRNA level of 

APP in a cell type-specific manner. Additionally, administration 

of melatonin efficiently reduced Aβ generation and deposition 

both in vivo [78, 79] and in vitro [77]. Moreover, it has been 

reported that mitochondrial dysfunction is characteristic of Aβ-

induced neuronal toxicity in AD. A mitochondrial cascade 

hypothesis was proposed  postulating that Aβ production, and 

tau phosphorylation, are consequences of impaired 

mitochondrial function and hypometabolism.  Interestingly, the 

activity of mitochondrial enzymes (such as pyruvate- and 

ketoglutarate-dehydrogenase) as well as of some respiratory 

complexes (NADH:ubiquinone oxidoreductase, complex I, and 

cytochrome oxidase; complex IV, both partly coded by 

mitochondrial DNA) are reduced in mitochondria from AD 

subjects.  

 

HYPOTHESIS 

Considerng the findings of Panfoli et al., [25, 60] and others [42, 

31, 41, 80], the present paper proposes the hypothesis of a role 

for melatonin-Aβ axis in mitochondria, and  that the interaction 

of melatonin vs Aβ are intertwined to the balance of the  inter 

and extra mitochondrial energy production. This balance would 

be deregulated by the ageing process and other 

environmental/genetic factors, in turn leading to 

hypometabolism and neurodegenerative diseases characterized 

by protein deposition, such as AD and /or AMD. 

 

Evaluation and Disscussion of the Hypothesis 

Cumulative oxidative status plays a critical role to AMD and AD, 

both age related disorders [61]. A large gradient of oxygen 

towards the inner retina [81] fits with  an extra mitochondrial 

respiration [22]. Panfoli et al. [60] proposed a bioenergetic 

hypothesis drusen, which may originate through 

hypometabolism , in turn imbalancing clearance of proteins 

causing aggregation of peptides that accumulate [60]. In fact 

the OS, that contains high levels of polyunsaturated fatty acids 

and expresses oxygen-absorbing OXPHOS machinery  [82], 

outside mitochondria, is at risk of oxidative stress. ROI are in 

fact a by-product of the ETC [17] [62] [63]. ROI in turn may 

cause damage to RPE, increase the production of VEGF 

(Vascular Endothelial Growth Factor). Interestingly, Biochemical 

and histochemical analyses demonstrated that the labeled 

protein accumulating in the cytosol of Alzheimer degenerating 

neurons is the α-chain of the ATP synthase [83]. It is specifically 

observed in degenerating neurons, either alone or tightly 

associated with aggregates of tau proteins, suggesting that it is 

a new molecular event related to neurodegeneration. This may 

be the initiating factor in retinal degenerative diseases, but also 

in AD, both characterized by extracellular deposits of proteins. 

Extensive literature demonstrate melatonin antioxidant 

capacity [84 and refs. therein] both in vivo and in vitro. Its 

major action is maintenance of mitochondrial protein 

homeostasis. 
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 Interestingly, a modified model of the mitochondrial 

hypothesis for AD has been proposed, in which Aβ would cause 

neurotoxicity by interacting with mitochondrial targets or being 

itself intramitochondrial [85]. To strengthen the 

extramitochondrial idea,  Schmidt et al. [86] showed in vitro 

that ATP synthase subunit α is a binding partner for APP and Aβ 

on the surface of cultured hippocampal neurons and astrocytes 

indicating regulation of extracellular  ATP levels in the brain.  

Human drusen were found to contain Aβ and this was 

interpreted as an indication that the pathogenic pathways 

giving rise to drusen and AMD may be common in 

neurodegenerative diseases characterized by misfolded protein 

aggregation [53]. San Li Xing et al., 2012 [41] showed in amyloid 

precursor protein/presennillin-1 transgenic mice that the  α-

subunit of ATP synthase is associated with aggregates of Aβ 

proteins in amyloid plaques and when extracellular ATP 

generation was analyzed a inhibition pattern was observed by 

the aggregating Aβ peptide but not the level of ATP synthase 

subunit alpha on neurons. Chronic exposure to soluble Aβ may 

result in an impairment of energy homeostasis due to a 

decreased respiratory capacity of mitochondrial electron 

transport chain which, in turn, may accelerate neurons demise 

[41]. 

We have addressed that Aβ is a pathological component in AD 

and AMD and that Aβ and APP can be addressed to the 

mitochondrion. In respect to new insights of the 

extramitochondrial role in energy production for eyesight 

[20,25] in the OS of rods and that Aβ directly binds to theα 

subunit of the ATP synthase at the neuronal membranes and 

the demonstration of a number of complexes to capture and 

direct electrons and protons in the cell, melatonin shows 

probably a primary constituent in balancing the energy 

production in mitochondrial by acting upon the production of 

Aβ.    

In the introduction we showed that melatonin regulates APP 

metabolsim and can  efficiantly protect cells against Aβ toxicity, 

oxidative damage and cell death in vitro and  in vivo [47]. A 

recent study  showed that, chronic melatonin therapy in old 

Tg2576 mice initiated at 14 months of age failed to remove 

existing plaques, but also to prevent additional Aβ deposition 

[87]. Data on a diminished Aβ in melatonin-treated wild type 

mice [88] and reduced Aβ and protein nitration in melatonin 

treated Tg2576 mice also exist [89]. However, both studies 

concur in finding little evidence of the potent antioxidant 

effects of melatonin in the oldest mice. These findings indicate 

that melatonin has the ability to regulate APP metabolism and 

prevent Aβ pathology, but fails to exert anti-amyloid or 

antioxidant effects when initiated after the age of Aβ 

deposition. Although consistent conclusions were achieved, 

none of the related studies further explained how melatonin 

exerts its inhibitory effect on Aβ generation. One explanation of 

why aged mice are immune to melatonin might be in the 

process of melanogenesis, i.e. a failure in light/melanin/water 

system would be a cause rather than effect of AD has been 

proposed  [90].  The decrease in melanins ability to dissociate 

water (human photosynthesis) in AMD [91] and or AD has been 

proposed to be a cause of these diseases is a simplistic 

overview of the bioenegetic mechanism related to these 

diseases. In our view hypometabolism, likely due to decline in 

both intra- and extra-mitochondrial OXPHOS functioning, are 

indeed fundamental to the understanding of pathological 

processes in these related diseases and that there is a 

homeostatic mechanism of energy balance  related to 

relationship of melatonin versus Aβ through the regulation of 

mitochondrial fidelity. Melatonin protective role in AMD and 

AD may be a result of its action on mitochondrial physiology as 

suggested by its presence in mitochondrian circadian and 

seasonal variations in the brain and retina [92]. Locally 

produced melatonin in the surrounding of photoreceptors 

protects these cells thanks to its anti oxidant capacity or by 

activation of melatonin receptors [93]. Melatonin can increase 

membrane fluidity, as well as the activity of the ETC and ATP 

production, mitochondria membrane potential, while reducing 

oxidative stress [94]. Important pathological properties of Aβ, 

such as neurotoxicity and resistance to proteolytic degradation, 

depend on the ability of peptides to form β-sheet structures 

and/or amyloid fibrils [47]. Intervention in the Aβ aggregation 

process can be considered an approach to stopping or slowing 

the progression of AD and new investigation AMD. Melatonin 

can interact with Aβ40 and Aβ42 and inhibit the progressive 

formation of β-sheet and/or amyloid fibrils[95,96]. Melatonin 

could promote the conversion of β-sheets into random coils by 

disrupting the imidazole-carboxylate salt bridges and thus 

prevent Aβ fibrillogenesis and aggregation. It is therefore 

possible that by blocking the formation of the secondary β-

sheet conformation, melatonin may not only reduce 

neurotoxicity but also facilitate clearance of the peptide via 

increased proteolytic degradation.  

However, it is difficult to determine the extent of the 

contribution from each of these properties to the overall 

effects of melatonin treatment in vivo. In mammals melatonin 

exerts some of its functions through two specific high-affinity 

membrane receptors belonging to the superfamily of G-

protein-coupled receptors: MT1 and MT2. Decreased MT2 

immunoreactivity and increased MT1 immunoreactivity have 

been reported in the hippocampus of AD patients [97]. 

Contrary to these findings, a study by Pappolla et al. [98] 

demonstrated that melatonin protective activities against Aβ 

toxicity does not require its binding to membrane receptors, 

which strongly suggests that protection is a result of its 

antioxidant and anti amyloidegenic features. Melatonin 
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receptors have been found to modulate the visual function in 

mouse retina [99]. Numerous relationships are shown between 

melatonin and mitochondria in which protection of ETC 

proteins are crucial [94]. The hypothesis herein exposed has 

concentrated on the melatonin-Aβ axis in mitochondrial age 

related processes leading to AD and AMD. Still, there is a more 

complex view of this axis which is not in the scope of this paper, 

i.e. first, melatonin  functions exceeds its role as hormone that 

mediates signal ‘’darkness’’, second melanocytes are viewed as 

‘’neurons of the skin’’ with sensory and regulatory properties 

which can detect and transform external and internal 

signals/energy into organized regulatory networks for the 

maintenance of skin homeostasis [100] and  melanogenesis and 

its product melanin is by itself an pigment that has 

extraordinary properties [101].  The most important property is 

melanin participation in electron transfer reactions, reducing 

and oxidizing other molecules. Also, its key monomer, 

indolequinone, exhibits photodriven proton transfer cycles 

[102]. Melanin has showed radiotropism, melanized fungi are 

stimulated to grow in environments with high ionizing 

radiation, suggesting melanin may function as a broad-band 

radiation energy harvester, similiar to chlorophyll [103]. 

In summary, the mitochondrion is the prime cross road 

enabling electron transfer for all these transfer, and it is 

reasonable that proton flow may represent a fundamental 

physical force that sustains, drives, and informs all biological 

organization and dynamics, Nevertheless, electron driven 

transport of protons would not be confined to the 

mitochondrion but it seems to be a fundamental properties of 

many cell membranes.  

 

CONCLUSION 

Both AMD and AD are age-related neurodegenerative diseases. 

They share similar environmental risk factors thereby 

comprising smoking, hypertension, hypercholesterolemia, 

atherosclerosis, obesity, and unhealthy diet [104]. The 

pathogenesis is associated with increased oxidative stress, and 

hypometabolism with impaired proteasomal and lysosomal 

function that evoke formation of intra- and extracellular 

deposits, drusen, lipofuscin and amyloid plaques, features of 

both AMD and AD, even though with a different genetic 

background. These facts imply a role for intra but also for extra-

mitochondial OXPHOS. 

We have addressed that Aβ is a pathological component in both 

AD and AMD and that both Aβ and APP can be addressed to the 

mitochondrion. Moreover, ATP synthase α-subunit was found 

to be a component of AMD drusen that in turn contain Aβ. New 

insights on the role of extramitochondrial energy production 

suggest that it may support visual process [5, 8] in the rod OS 

and neuronal conduction in myelin vesicles [23, 105] and are 

consistent with the finding that the α-subunit of ATP synthase 

is associated with Aβ in Alzheimer's disease [35]. Melatonin 

seems to be a primary constituent in balancing the energy 

production in mitochondrial by acting upon the production of 

Aβ. In fact, melatonin can regulate APP metabolism and 

efficiently protect cells against Aβ toxicity, oxidative damage 

and cell death, by interacting with Aβ40 and Aβ42 and inhibit 

the progressive formation of β-sheet and/or amyloid fibrils 

[47]. 

Our hypothesis does to some extent comprise an epigenetic 

paradigm coupling aging as an underling mechanism of AD and 

AMD.A genetic background would be a “blue print’’ in which 

environmental, genetic and bioenergetic factors (intra- and 

extra-mitochondrial energy production) tending to act upon 

them, thus leading to AMD and /or AD. There is a direct link 

between perturbed energy states in neurons  and the retina 

[60] and creatinin and ATP metabolism. Also, there is a direct 

interaction between APP and the precursor of ubiquitous 

mitochondrial creatin kinase supporting a relationship between 

AD, cellular energy levels and mitochondrial function [106]. The 

same principle is allied to the retina and occurrence of AMD 

[60]. An understanding of the processes related to extra-

mitochondrial and intra-mitochondrial regulation of 

metabolism in the brain and in retina and their balance by a 

melatonin-Aβ axis may emerge as new therapeutic pathway for 

the therapy of both AMD and AD.  
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